음악 데이타의 양이 급속히 증가함에 따라 음악 데이타베이스의 오디오 특정을 이용한 내용기 반 음악 장르의 효율적인 유사도 검색 방법이 요구되고 있다. 이러한 시스템을 구현하기 위해서는 시계열 패턴인 오디오 특징을 인덱싱 할 수 있는 인덱싱 기법과 데이터마이닝 기술이 필요하다. 본 논문에서는 인덱싱 기법을 기반으로 하는 유사 장르 음악 검색 시스템의 개발에 대하여 논의한다. 먼저, 시계열 패턴 인덱싱 기법과 데이터마이닝을 이용한 내용기반 음악장르 검색 시스템의 구조를 제안한다. 또한, 오디오 특정을 이용한 유사 장르 검색의 성능을 보이기 위하여 시계열 패턴 인덱스 화일을 구축하고 성능 분석 을 제시한다. 실제 데이타의 특정값을 이용한 실험을 통하여 제안한 기법의 성능을 확인하였다.
시계열 데이터(time-series data)는 연속적인 데이터를 고정된 시간 간격으로 샘플링한 실수 값들의 연속을 의미한다. 시계열 데이터의 예로는, 음악 및 동영상 데이터, 심전도 데이터, 주식 그래프 등의 데이터가 있다. 시계열 데이터는 다시 데이터베이스에 저장 되어있는 데이터 시퀀스(data sequence)와, 사용자에 의해 주어지는 질의 시퀀스(query sequence)로 분류된다. 시계열 데이터베이스(time-series database)에서 순위를 지원하는 서브시퀀스 매칭 방법(ranked subsequence matching)은 데이터 시퀀스와 질의 시퀀스가 주어졌을 때, 질의 시퀀스의 길이와 같은 데이터 시퀀스의 서브시퀀스(subsequence)들 중에서 질의 시퀀스와 가장 유사한 상위 k개의 서브시퀀스들을 찾는 것이다. 본 논문의 목적은 사용자가 매칭 방법에 대한 인식과 이해가 부족하더라도 기존의 콘솔 기반의 매칭 프로그램을 보다 쉽게 사용할 수 있도록 이용성을 향상시키기 위하여 시각화 툴을 개발하는 것이다. 구체적으로, 5가지 시각화(visualization) 기능을 제공하는 사용자 인터페이스를 구현하였다. 구현된 사용자 인터페이스를 통해 사용자가 기존의 매칭 프로그램을 보다 쉽고 간편하게 사용할 수 있도록 기여한다.
이 논문에서는 시퀀스 데이터베이스에서 효과적인 유사 검색을 지원하기 위한 색인 기법을 제안한다. 제안하는 색인 기법에서는 데이터 시퀀스에 대한 필터링 효과를 얻기 위해, 최소 DTW 거리를 새롭게 제안한다. 최소 DTW 거리는 유사한 데이터 시퀀스 그룹과 질의 시퀀스 사이의 최소거리를 측정하는 방법이다. 최소 DTW 거리는 계층적인 색인 구조를 통해서 시퀀스 데이터베이스를 필터링하면서 유사도 검색을 수행할 수 있도록 한다. 마지막으로, 실험을 통해서 제안하는 방법의 우수성을 입증한다.
유클리드 거리에 기반하여 유사한 시퀀스 검색을 하는 기법들은 각 시퀀스에서 특징을 추출하여 차원을 감소시킨 후, R-tree 같은 다차원 인덱싱 기법을 사용하여 검색을 수행한다. 본 논문에서는 시계열 데이터 베이스에서의 유사 검색 성능 향상을 위한 새로운 특징 추출 기법인 Polar Wavelet 기법을 제안한다. 이 기법은 유사 검색 시 후보 시퀀스의 개수를 줄임으로써 검색 성능을 향상시킬 수 있고, 특징 추출을 위해 시퀀스의 길이를 2$^n$으로 만들 필요가 없는 장점을 갖고 있다.
최근 몇 년간 시계열 데이터의 저장 및 분석에 대한 연구가 활발히 진행되고 있으며, 시계열 데이터베이스에서 유사패턴(similarity pattern)을 탐색하는 기법이 광범위한 응용분야에서 중요한 연구주제로 자리잡고 있다. 본 논문에서는 회귀분석방법을 바탕으로 한 분해 시계열 방법을 이용함으로써 기존의 유사성의 개념을 확장시켰다. 즉, 시계열 데이터가 가지고 있는 패턴을 여러 성분으로 분해하여 각기 다른 저장 공간에 저장하고, 이를 이용하여 유사성을 탐색할 때에도 분리된 각 성분 중 특정 변동특성이 유사한 데이터를 추가적으로 요구되는 시간없이 검색할 수 있다. 이는 전체 시계열 데이터를 이해하는데 뿐만 아니라 데이터를 예측하는 방법에도 유용하게 사용될 수 있다.
모양 기반 검색은 주어진 질의 시퀸스의 요소 값에 상관없이, 모양이 유사한 시퀸스 혹은 부분시퀸스를 찾는 연산이다. 본 논문에서는 시프트, 스케일링, 타임 워핑 등 동일 모양 변환의 다양한 조합을 지원할 수 있는 새로운 모양 기반유사 검색 모델을 제안하고, 효과적인 유사 부분 시퀸스 검색을 위한 인덱싱과 질의 처리 방법을 제안한다. 또한 실세계의 증권데이터를 이용한 다양한 실험 결과에 의하여, 본 방식이 질의 시퀸스와 유사한 모양의 모든 서브시퀸스를 성공적으로 찾는 것은 물론 순차검색 방법과 비교하여 매우 빠른 검색 효율을 가짐을 보인다.
최근 시계열 데이터에서 유사한 패턴을 탐색하는 기법이 다양한 응용분야에서 중요한 연구 주제로 자리잡고 있다. 본 논문에서는 시계열의 트랜드를 정의하고 유사한 트랜드를 가지 시계열을 찾음으로써 유사성의 개념을 좀 더 확장, 발전시켰다. 즉, 시계열에서의 트렌드를 두 개의 이동 평균 선의 관계를 통해 정의함으로써 두 시계열 간의 거리만으로 유사도를 측정했던 기존 연구와는 달리 좀 더 패턴을 가진 수열들을 찾고 이것을 기존의 DFT방법을 이용하여 대용량의 시계열 데이터베이스에서 사용자가 정의한 임계치 이하로 차이가 나는 시계열에 대해 유사 시계열로서 최종적으로 검색하게 된다.
Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist prolific patterns and/or long patterns. And calendar based on temporal association rules proposes the discovery of association rules along with their temporal patterns in terms of calendar schemas, but this approach is also adopt an Apriori-like candidate set generation. In this paper, we propose an efficient temporal frequent pattern mining using TFP-tree (Temporal Frequent Pattern tree). This approach has three advantages: (1) this method separates many partitions by according to maximum size domain and only scans the transaction once for reducing the I/O cost. (2) This method maintains all of transactions using FP-trees. (3) We only have the FP-trees of I-star pattern and other star pattern nodes only link them step by step for efficient mining and the saving memory. Our performance study shows that the TFP-tree is efficient and scalable for mining, and is about an order of magnitude faster than the Apriori algorithm and also faster than calendar based on temporal frequent pattern mining methods.
유사 시퀀스 매칭에서는 고차원인 시퀀스를 저차원의 점으로 변환하기 위하여 저차원 변환을 사용한다. 그런데, 이러한 저차원 변환은 시계열 데이터의 종류에 따라 인덱싱 성능에 있어서 큰 차이를 나타낸다. 즉, 어떤 저차원 변환을 선택하느냐가 유사 시퀀스 매칭의 인덱싱 성능에 큰 영향을 주게 된다. 이 문제를 해결하기 위하여, 본 논문에서는 하나의 인덱스에서 두 개 이상의 저차원 변환을 통합하여 사용하는 하이브리드 접근법을 제안한다. 먼저, 하나의 시퀀스에 두 개 이상의 저차원 변환을 적용하는 하이브리드 저차원 변환의 개념을 제안하고, 변환된 시퀀스간의 거리를 계산하는 하이브리드 거리를 정의한다. 다음으로, 이러한 하이브리드 접근법 사용하면 유사 시퀀스 매칭을 정확하게 수행할 수 있음을 정형적으로 증명한다. 또한, 제안한 하이브리드 접근법을 사용하는 인덱스 구성 및 유사 시퀀스 매칭 알고리즘을 제시한다. 다양한 시계열 데이터에 대한 실험 결과, 제안한 하이브리드 접근법은 단일 저차원 변환을 사용하는 경우에 비해서 우수한 성능을 보이는 것으로 나타났다. 이 같은 결과를 볼 때, 제안한 하이브리드 접근법은 다양한 특성을 지닌 다양한 시계열 데이터에 두루 적용될 수 있는 우수한 방법이라 사료된다.
본 논문에서는 시퀀스 데이터베이스에서 시간왜곡 변환(time warping)을 지원하는 서브시퀀스 탐색 문제를 다룬다. 서브시퀀스 탐색은 데이터 시퀀스의 평균 길이의 이차 함수로 성능이 저하된다. 이러한 문제를 해결하기 위하여 본 논문에서는 세그먼트 기반 서브시퀀스 탐색 기법(Segment-Based Approach for Subsequence Searches : SBASS)을 제안한다. SBASS는 데이터와 질의 시퀀스를 연속된 세그먼트들로 분할하여 다음의 두가지 조건을 만족하는 모든 데이터 시퀀스를 검색한다. (1) 세그먼트의 개수가 질의 시퀀스의 세그먼트 개수와 같다. (2) 모든 세그먼트 쌍 간의 거리가 주어진 오차 한도 이내이다. 제안된 세그먼트 분할 기법에서는 세그먼트가 서로 다른 길이를 갖도록 허용하며, 세그먼트 쌀간의 유사성의 척도로서 시간왜곡 변환 거리를 이용한다. 효율적인 유사 서브시퀀스 탐색을 위하여, 각 데이터 세그먼트로부터 요서 값들이 단조적으로 변화하는 특성을 이용하여 특성 벡터를 추출하고, 추출된 특성 벡터를 이용하여 공간 인덱스를 생성한다. 질의는 이 인덱스를 이용하여 (1) R-트리 여과, (2) 특성 여과, (3) 순서 여과, (4) 후처리의 네 단계로 처리된다. 다양한 실험을 통하여 제안된 기법의 효율성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.