• Title/Summary/Keyword: Time series method

Search Result 2,415, Processing Time 0.03 seconds

Time Discretization of Nonlinear System with Variable Time-delay Input Using Taylor Series Expansion (Taylor series를 이용한 시변 지연 입력을 갖는 비선형 시스템의 이산화)

  • Choi Hyung Jo;Park Ji Hyang;Lee Su Young;Chong Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • A new discretization algorithm for nonlinear systems with delayed input is proposed. The algorithm is represented by Taylor series expansion and ZOH assumption. This method is applied to the sampled-data representation of a nonlinear system with the time-delay input. Additionally, the delay in input is time varying and its amplitude is bounded. The maximum time-delay in input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. The computer simulation proves the proposed algorithm discretizes the nonlinear system with the variable time-delay input accurately.

Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model (전이함수잡음모형에 의한 공주지점의 용존산소 예측)

  • 류병로;조정석;한양수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

Comparison Study of Time Series Clustering Methods (시계열자료 눈집방법의 비교연구)

  • Hong, Han-Woom;Park, Min-Jeong;Cho, Sin-Sup
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1203-1214
    • /
    • 2009
  • In this paper we introduce the time series clustering methods in the time and frequency domains and discuss the merits or demerits of each method. We analyze 15 daily stock prices of KOSPI 200, and the nonparametric method using the wavelet shows the best clustering results. For the clustering of nonstationary time series using the spectral density, the EMD method remove the trend more effectively than the differencing.

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

The Data Processing Method for Small Samples and Multi-variates Series in GPS Deformation Monitoring

  • Guo-Lin, Liu;Wen-Hua, Zheng;Xin-Zhou, Wang;Lian-Peng, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.185-189
    • /
    • 2006
  • Time series analysis is a frequently effective method of constructing model and prediction in data processing of deformation monitoring. The monitoring data sample must to be as more as possible and time intervals are equal roughly so as to construct time series model accurately and achieve reliable prediction. But in the project practice of GPS deformation monitoring, the monitoring data sample can't be obtained too much and time intervals are not equal because of being restricted by all kinds of factors, and it contains many variates in the deformation model moreover. It is very important to study the data processing method for small samples and multi-variates time series in GPS deformation monitoring. A new method of establishing small samples and multi-variates deformation model and prediction model are put forward so as to resolve contradiction of small samples and multi-variates encountered in constructing deformation model and improve formerly data processing method of deformation monitoring. Based on the system theory, a deformation body is regarded as a whole organism; a time-dependence linear system model and a time-dependence bilinear system model are established. The dynamic parameters estimation is derived by means of prediction fit and least information distribution criteria. The final example demonstrates the validity and practice of this method.

  • PDF

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

The wavelet based Kalman filter method for the estimation of time-series data (시계열 데이터의 추정을 위한 웨이블릿 칼만 필터 기법)

  • Hong, Chan-Young;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.449-451
    • /
    • 2003
  • The estimation of time-series data is fundamental process in many data analysis cases. However, the unwanted measurement error is usually added to true data, so that the exact estimation depends on efficient method to eliminate the error components. The wavelet transform method nowadays is expected to improve the accuracy of estimation, because it is able to decompose and analyze the data in various resolutions. Therefore, the wavelet based Kalman filter method for the estimation of time-series data is proposed in this paper. The wavelet transform separates the data in accordance with frequency bandwidth, and the detail wavelet coefficient reflects the stochastic process of error components. This property makes it possible to obtain the covariance of measurement error. We attempt the estimation of true data through recursive Kalman filtering algorithm with the obtained covariance value. The procedure is verified with the fundamental example of Brownian walk process.

  • PDF

An Adaption of Pattern Sequence-based Electricity Load Forecasting with Match Filtering

  • Chu, Fazheng;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.800-807
    • /
    • 2017
  • The Pattern Sequence-based Forecasting (PSF) is an approach to forecast the behavior of time series based on similar pattern sequences. The innovation of PSF method is to convert the load time series into a label sequence by clustering technique in order to lighten computational burden. However, it brings about a new problem in determining the number of clusters and it is subject to insufficient similar days occasionally. In this paper we proposed an adaption of the PSF method, which introduces a new clustering index to determine the number of clusters and imposes a threshold to solve the problem caused by insufficient similar days. Our experiments showed that the proposed method reduced the mean absolute percentage error (MAPE) about 15%, compared to the PSF method.

Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting (러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.