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Abstract 
Time series analysis is a frequently effective method of constructing model and prediction in data processing of deformation 

monitoring. The monitoring data sample must to be as more as possible and time intervals are equal roughly so as to construct time 
series model accurately and achieve reliable prediction. But in the project practice of GPS deformation monitoring, the monitoring data 
sample can’t be obtained too much and time intervals are not equal because of being restricted by all kinds of factors, and it contains 
many variates in the deformation model moreover. It is very important to study the data processing method for small samples and 
multi-variates time series in GPS deformation monitoring. A new method of establishing small samples and multi-variates deformation 
model and prediction model are put forward so as to resolve contradiction of small samples and multi-variates encountered in 
constructing deformation model and improve formerly data processing method of deformation monitoring. Based on the system theory, 
a deformation body is regarded as a whole organism; a time-dependence linear system model and a time-dependence bilinear system 
model are established. The dynamic parameters estimation is derived by means of prediction fit and least information distribution 
criteria. The final example demonstrates the validity and practice of this method. 
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1. Introduction 
As everyone knows, No matter the earth’s crust occur 

deformation or large building become deformed, the internal 
mechanism of deformation is not clearly, and affected by a lot of 
external factor. So it’s difficult to describe the change as a whole 
and forecast the future tendency by general deformation. The 
problem would become simple when we use systems theory that 
a deformation body is regarded as a whole organism. 
Considering the internal movement as well as external factor, a 
time-dependence linear system model and a time-dependence 
bilinear system model would established in this paper. 

We can gain finite observation data for establish small sample 
because deformation monitor restrained by manpower, material 
resources and financial resources. We couldn’t choose many 
parameters due to finite observation data. The practical precision 

of the model reflect the reality is weak along with the reduced 
quantity of parameters; parameters estimation by general method 
couldn’t achieve ideal result on the condition that finite 
observation data and quantity of parameters couldn't reduced. 
The dynamic parameters estimation is derived by means of 
prediction fit and least information distribution criteria base on 
small sample in this paper. 

We may adopt the recursive estimation method in some 
literatures if just consider system time-dependence parameters 
estimation. In this paper we consider not only time-dependence 
of the system, but also the finite observation data. The 
time-dependence parameters in the model treated as continuous 
function and approximate by thrice B-spline function, thereby, 
time-dependence parameters estimation transform into 
non-time-dependence parameters estimation. 

 

2. Time-dependence Deformation Monitor System 
Model 

 
2.1 Time-dependence linear system model 

Suppose deformation monitoring to a deformation body, we 

gained observation sequence iy  and iu  

),,2,1( mi LL= in mttt ,,, 21 LL . Time-dependence 

linear system model is set up as follows: 
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x  is state variable for describing movement law of system; y  
and u leave each other as deformation observation value and 
external factor; )(tw  and )(te  are independent white noise 
with mean equal 0; 

)(,),(),(,),(),( 01 tbtbtatatc nm LL are 
time-dependence parameters. 
From formula (2) ,  we obtain 

)()()()()( tctetctytx −=              (3) 

According to formula (2) and (3),  we obtain: 
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where, )(/)()()( itctatctA ii −=  ( mi ,,2,1 LL= ); 

)()()( tbtctB jj =  ( nj ,,2,1,0 LL= );  
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Based on deformation tendency and distance of one period, use 

free crunodes divide up time field ],[ 1 mtt : 

mr tt =<<<=∆ +1101: τττ L  

It can be shown by add new crunodes that: 
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From literature[4] , we can work out thrice B-spline function 

series by use of crunodes cited just before as follows: 

)(,),(),( 23 tBtBtB rL−− , then spline function denoted by 
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Regard time-dependence parameters 

)(tAi , )(tB j ( njmi ,,1,0;,,2,1 LLL == ) in 

formula (4) as continuous function of t. and approximated by 

spline function (5), we obtain: 
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Where )(tε  is approximate error, )(tε have stochastic 

behavior due to time-dependence parameters stochastic behavior. 

For estimate parameters conveniently, we use Moving average 

model to denote )()(' ttw ε+ , namely 
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Where )}({ tε  is white noise series with mean equal 0. Using 

formula (6) and (7), denoted by matrix: 

)()()( ttty T ζθϕ +=                        (8) 

where 
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Time-dependence parameters estimation transforms into 
non-time-dependence parameters estimation pass through spline 
function approximate. 
 
2.2 Time-dependence bilinear system model 

Deformation of earth’s crust is a complex system, deformation 
relate to not only the geological character, but also external factor, 
for example temperature, air pressure, level of underground 
water, temperature of surface, meanwhile, relate to earth’s 
rotation, celestial gravitation as well as produce activity of 
human being. In such condition, linear system model can’t 
reflect the objective condition all right, so non-linear system 
model at demand. However, non-linear system theory isn’t 
perfect and algorisms are very complex, we adopt bilinear 
system model analyze and approximate non-linear system, so we 
set up bilinear system model as fellows: 
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)()()()( tetxtaty +=                     (10) 

Time-dependence of objective condition may reflected by the 

time-dependence observation vector and state vector. We don’t 

describe parameters in (9) by time-dependence for estimate 

parameters and calculate conveniently. Formula (9) shows the 

relation of non-direct observation )(tx and external 

factor )(tu . )(ty is polluted observation by noise )(te . d  

denote lag of deformation affect by external factor, )}({ te is 

white noise series with mean equal 0. If all 0=ijβ  

),,1,0;,,2,1( njmi LLL == , then, the model changes 

to linear system model. So ijβ  is degree of the system deviate 

to linear. 



We know from formula (10) that:  

)(/)()(/)()( tatetatytx −=           (11) 

Using (11) and(9), we obtain: 
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Where, ;,2,1),(/)( piitataaA ii L=−=  

qitabB ii ,1,0),( L== ; );(taaA =   

piitataac ii ,,2,1),(/)( L=−= ; 

mjliitatar ijij ,,2,1;,,2,1),(/)( LL ==−= β  

mjliitataa ijij LL ,2,1;,,2,1),(/)( ==−−= β . 

ic  and ija  are supplementary variables. 

When 
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Then formula (12) may denoted by  

)()()( tetty T += θϕ                 (13) 
Thereby time-dependence bilinear system model change to linear 
forecast error model. 
 

3. Dynamic Parameters Estimation 
Suppose observation system f , may described by parameters 

model with sample space isY , parameters aggregation isΘ  
and density distribution function is  

}),({ Θ∈= θθypP                 (14) 

Suppose X is n-times repeated trials to f , Bayesian forecast 

base on density function )( θyp  of X denoted by 

∫= θ
θθθ dxpypxyq )()()(      (15) 

Where )( xp θ is posterior density function base on prior 

probability )(θp and X . ]5[Aitchison using prediction fit 

criterion: 

dyxyrxyqypdxXpdp
YX

)}(/)(log{)()()( ∫∫∫Θ θθθθ            

(16) 

And prove it always plus, so Bayesian forecast method is better 

than others. ]6[Murry  points out that forecast density 

function fits the true density function better than other method. 

From literature [7], when the true density function is normal 

distribution, the forecast density function is student distribution. 

So student distribution fits the probability density function quite 

well when small sample from normal distribution collectivity. 

Suppose N  independent observation of Y from normal 

distribution collectivity ,,,, 21 Nyyy L  iy have mean value 

of θϕ )(tT and same variance 2σ , follow above, we know: 
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Where ,1−= Nr N  is quantity of sample, r  is free 

degree. As independent of the samples, likelihood function is: 

∏

∏

=

+
−−

=

−+

Γ

+
Γ

=

==

N

i

r
T

i
NN

N

N

i
i

iyr
rr

r

ypypL

1

2
1

212

2
1

1

22

}))(()(1{
)

2
()(

)
2

1(

),(),(

θϕσ
σπ

σθσθ

     (18) 

Logarithmetics (18), obtain that 
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Base on Bayesian 
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 We must make (21) reach extreme in order to enable (20) reach 
extreme. 
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Next consider how chose least information Bayesian prior 
distribution on the condition of finite observation data. From 
literature [8], information measure of prior density was defined 
as: 

))(( θpI =Information content of θ  in 

−)( Yp θ information content of θ  in  

)(θp = 

θθθθθθ dppdYdYpYpYp ∫∫∫ − )}(log{)()()}(log{)(                        

(22) 
Maximize (22) is the optimum least information distribution. 
Maximize (22) distribution is different to prior distribution of 
maximum entropy, namely different to prior distribution with 
minimum second item in (22). The influence of first item is 
decrease along with increasing amount of data, then, least 
information distribution become prior distribution gained by 
maximum entropy method.  
In the condition of small sample, confirm the least information 
distribution concern optimum of infinite dimensional. So we use 
optimum convex-combination which prior distribution is clear as 
least information distribution method. Any density function may 
approximate by combination of several Gauss  prior 
distribution very well. Foundation Gauss prior distribution 
defined: 
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4. Distinguish Rule and Example 
Different estimation methods deliver different result, so we 
should set up a standard to measure the estimation result. Here, 
we regard relative mean square error as standard, namely 
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where iθ  is the true value of parameters, 
∧

θ  denote 

estimation value. Set up a time-dependence bilinear system 

model base on objective factor of deformation with 
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Then (25) denoted by: 

)()()( tetty T += θϕ                    (26) 

where )(ˆ)()()()( θθϕ tytyttyte T −=−= . regard as 

forecast error, denoted by ),( θte . The variance of forecast 

error is ]))(ˆ)([()()( 22 θσ tytyEtct −=∆  

For convenience, we use limit variance 2σ replace )(2 tσ . 

From (25), we know ),( θte  is linear function 

of iii
iii rrrBBBA 1312112101 ,,,,,, , is non-linear function of 

iii aaac 1312111 ,,,  so we use iteration method to settle. We 

adopt change of scale algorithm for maximize (21) in order to 

estimate θ . Where )0(θ̂  is least square estimator, 



1)0(2 =σ .  We obtain the deformation model of earth’s 

crust in this area  
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Use 8th data to test the model above-mentioned. The model fits 
the reality observation data very well, so the model is effective 
and applied. 
 

5. Conclusion 
We obtain conclusion through theory and example as follow: 

1) The time-dependence system model mentioned in this paper 
fits deformation study of dam, building as well as abnormal 
movement of earth’ crust. We regard the change law of 
deformation body as whole thereby avoid the large error of 
general model, meanwhile, the model own the advantage of 
primely reflect the change law of entirety. 
(2) The external factor taken into account for set up the system 
model in this paper. The influences by the external factor exist 
for a certainty although it is inconspicuous. Thus we must 
consider external factor when inspect dam, building and so on. 
(3) In the condition of finite observation data, the estimation 
method in this paper for example: least squares method, 
maximum likelihood method and so on is better than others. But 
in this condition, the statistical character of noise didn’t exhibit 
adequately, so parameters estimation affected by observation 
noise and stochastic approximate error require more research. 

 

Reference 
[1] C.Y., Xi. The Pistinguish and the Estimation of Parameters 

for Deformation Model. Editorial Board of Geomatics and 
Information Science of Wuhan University, 1990, (2) 

[2] Z. O., Wang, W. G. Bao. A maximum Likelihood Estimation 
Method of a Bilinear System under Small Samples. Journal 
of Tianjin University, 1990, (2) 

[3] W. P., Wang, D. H., Pan. Two Adaptive Recursive Algorithms 
for Estimating Time-varying Parameters. Control Theory & 
Applications, 1990, (1) 

[4] Z.C., Cheng. Data fitting. Xian Xi'an Jiaotong University 
Press, 1979 

[5] J. Aitchison. Goodness of Prediction Fit. Biomertrika, 
1975,62 (3) 

[6] C.D Murry. The Estimation of Multivariate normal Density 
functions Using Inlomplete Data. Eiometrika, 1979,66(2) 

[7] J. Aitchison & I.K Dansmure. Statistical Prediction Analysis. 
Cambridge University press, 1975 

[8] Least information Bayesian prior distribution for Finite 
Sample Based on Information Theory. IEEE Trans.Automat. 
contr., 1990, 35(5) 

[9] D.L. Alspach & H.W.Sorenson. Nonlinear Bayesian 
Estimation using Gaussian Sum Approximations. IEEE 
Trons . Automat . contr, vol.AC-17, 1972, (4) 

 
The study is supported by Special Project Fund of Taishan 

Scholars of Shandong Province, Natural Science Fund of 
Qingdao (04-2-JZ-101), Natural Science Fund of Shandong 
Province (Y2003E01), Fund of Key Laboratory of Geospace 
Environment and Geodesy Ministry of Education, China 
(04-01-04) 

Address: 
College of Geo-information Science & Engineering,  
Shandong University of Science and Technology 
Qianwangang Road 579,  
QingDao Economic & Technological Development Zone,  
QingDao, Shandong Province, P.R.China 
Email: gliu@sdust.edu.cn

 


