• Title/Summary/Keyword: Time series method

Search Result 2,415, Processing Time 0.035 seconds

Combination Prediction for Nonlinear Time Series Data with Intervention (개입 분석 모형 예측력의 비교분석)

  • 김덕기;김인규;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.293-303
    • /
    • 2003
  • Under the case that we know the period and the reason of external events, we reviewed the method of model identification, parameter estimation and model diagnosis with the former papers that have been studied about the linear time series model with intervention, and compared with nonlinear time series model such as ARCH, GARCH model that it has been used widely in economic models, and also we compared with the combination prediction method that Tong(1990) introduced.

Feature selection using genetic algorithm for constructing time-series modelling

  • Oh, Sang-Keon;Hong, Sun-Gi;Kim, Chang-Hyun;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.102.4-102
    • /
    • 2001
  • An evolutionary structure optimization method for the Gaussian radial basis function (RBF) network is presented, for modelling and predicting nonlinear time series. Generalization performance is significantly improved with a much smaller network, compared with that of the usual clustering and least square learning method.

  • PDF

A Hilbert-Huang Transform Approach Combined with PCA for Predicting a Time Series

  • Park, Min-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.995-1006
    • /
    • 2011
  • A time series can be decomposed into simple components with a multiscale method. Empirical mode decomposition(EMD) is a recently invented multiscale method in Huang et al. (1998). It is natural to apply a classical prediction method such a vector autoregressive(AR) model to the obtained simple components instead of the original time series; in addition, a prediction procedure combining a classical prediction model to EMD and Hilbert spectrum is proposed in Kim et al. (2008). In this paper, we suggest to adopt principal component analysis(PCA) to the prediction procedure that enables the efficient selection of input variables among obtained components by EMD. We discuss the utility of adopting PCA in the prediction procedure based on EMD and Hilbert spectrum and analyze the daily worm account data by the proposed PCA adopted prediction method.

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

Correlation Analyses of the Temperature Time Series Data from the Heat Box for Energy Modeling in the Automobile Drying Process (자동차 건조 공정 에너지 예측 모형을 위한 공조기 온도 시계열 데이터의 상관관계 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we investigate the statistical correlation of the time series for temperature measured at the heat box in the automobile drying process. We show, in terms of the sample variance, that a significant non-linear correlation exists in the time series that consist of absolute temperature changes. To investigate further the non-linear correlation, we utilize the volatility, an important concept in the financial market, and induce volatility time series from absolute temperature changes. We analyze the time series of volatilities in terms of the de-trended fluctuation analysis (DFA), a method especially suitable for testing the long-range correlation of non-stationary data, from the correlation perspective. We uncover that the volatility exhibits a long-range correlation regardless of the window size. We also analyze the cross correlation between two (inlet and outlet) volatility time series to characterize any correlation between the two, and disclose the dependence of the correlation strength on the time lag. These results can contribute as important factors to the modeling of forecasting and management of the heat box's temperature.

Introduction and Utilization of Time Series Data Integration Framework with Different Characteristics (서로 다른 특성의 시계열 데이터 통합 프레임워크 제안 및 활용)

  • Jisoo, Hwanga;Jaewon, Moon
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.872-884
    • /
    • 2022
  • With the development of the IoT industry, different types of time series data are being generated in various industries, and it is evolving into research that reproduces and utilizes it through re-integration. In addition, due to data processing speed and issues of the utilization system in the actual industry, there is a growing tendency to compress the size of data when using time series data and integrate it. However, since the guidelines for integrating time series data are not clear and each characteristic such as data description time interval and time section is different, it is difficult to use it after batch integration. In this paper, two integration methods are proposed based on the integration criteria setting method and the problems that arise during integration of time series data. Based on this, integration framework of a heterogeneous time series data was constructed that is considered the characteristics of time series data, and it was confirmed that different heterogeneous time series data compressed can be used for integration and various machine learning.

A Study on the Predictive Power Improvement of Time Series Model with Empirical Mode Decomposition Method (경험적 모드분해법을 이용한 시계열 모형의 예측력 개선에 관한 연구)

  • Kim, Taereem;Shin, Hongjoon;Nam, Woosung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.981-993
    • /
    • 2015
  • The analysis of hydrologic time series data is crucial for the effective management of water resources. Therefore, it has been widely used for the long-term forecasting of hydrologic variables. In tradition, time series analysis has been used to predict a time series without considering exogenous variables. However, many studies using decomposition have been widely carried out with the assumption that one data series could be mixed with several frequent factors. In this study, the empirical mode decomposition method was performed for decomposing a hydrologic time series data into several components, and each component was applied to the time series models, autoregressive moving average (ARMA). After constructing the time series models, the forecasting values are added to compare the results with traditional time series model. Finally, the forecasted estimates from ARMA model with empirical mode decomposition method showed better performance than sole traditional ARMA model indicated from comparing the root mean square errors of the two methods.

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Model reduction by the eigenvalue selected considering the error of the power series (멱급수 오차를 고려하여 선택된 고유치에 의한 모델 저차화 방법)

  • 김원호;최태호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.155-160
    • /
    • 1987
  • In this paper, the model reduction method of the linear time invariant continuous systems is proposed. The denominator of reduced order model is determined by the eigenvalue selected considering the error of the power series that exists between original system and reduced order system at each time moments. And the numerator of model is founded by the time moment matching method. The method suggested is compared with other various methods in examples.

  • PDF