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ABSTRACT 
 

The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of 
a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are 
formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These 
missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies 
for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for 
missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This 
research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear 
Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving 
EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the 
relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables 
and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear 
computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed 
method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations 
demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and 
interpolation approaches, respectively. 
 
Key words: Multivariate Time Series, Electroencephalogram (EEG), Handling Missing Values, Interpolation, Linear Dynamical 
System, Kalman Filter, MSVD, Expectation maximization. 
 
 

1. INTRODUCTION 
 

 Human brain is one of the most vital organs of humans, 
controlling the coordination of muscles and nerves. To 
communicate between human brains and computers, 
electroencephalogram (EEG) based on brain computer 
interface is provided.  

EEG signals reflect electrical activities of a brain. EEG 
signals have various clinical and advanced scientific 
applications such as medicine, pharmacy, psychology, 
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linguistics, and biology. Due to the usefulness of EEG signals, 
the study of brain electrical activities, through 
electroencephalogram (EEG) records, is one of the most 
important tools for the diagnosis of neurological diseases [1].  

To have an accurate insight and improved understanding 
of the mechanisms causing widespread brain disorder, careful 
analyses of EEG records are necessary. Large amounts of EEG 
signal processing have been investigated recently for 
distinguishing epileptic seizures, emotions, and brain 
functions. For example, Guler explored the ability of desired 
and trained Elman recurrent neural networks, combined with 
the Lyapunov exponents on the EEG signals [1]. Polat 
proposed a hybrid system to detect epileptic seizure in EEG 
signals via two steps: feature extraction using Fourier 
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transform, and decision making using the decision tree 
classifier [2]. Adeli et al. investigated discrete Daubechies and 
harmonic wavelets for the analysis of epileptic EEG records 
[3]. Besides, many investigators have developed different 
methods to better understand the dynamics of human brains 
through EEG analysis [4]-[7]. Since EEG signals are recorded 
from multiple electrodes placed on different locations along 
the scalp surface, the problem of missing values can be 
encountered frequently due to the disconnection of  particular 
electrodes, lost signals, or the failure to report some of the 
measurements in time [8]. Unfortunately, most of the above 
approaches assume that the EEG signal is a complete data set 
as input. With the occurrence of missing values, they can 
cause inaccurate usage, distort results, or even degrade the 
performance of techniques.  

Missing values are often simply discarded or ignored 
because they are deemed unimportant for analysis. However, 
if the presence of missing values is consecutive for a long 
period of time, the performance of methodologies on these 
dataset will not provide the accurate results. Hence, missing 
value estimation in EEG time series is necessary for the 
pre-processing in order to boost accuracy and reliable usage 
requirement . 

On the other hand, the collected EEG dataset exhibits a 
large spatial and temporal relativity in their values. The size of 
the data is often a massively large matrix containing multiple 
dimensions. Since there are correlations among the variables 
of a large matrix expression of EEG signal over time, the 
necessity of variable selection is emphasized. It is not 
advisable to try to use the whole dataset for a process that 
would require only a small piece to be completed adequately. 
Therefore, it is better to mine meaningful variables from the 
large databases in order to save memory, processing power, 
and time as well.  

To handle the above challenges successfully, we propose 
a new approach which satisfactorily fits on the available data 
when missing values are present. Our prime objective is to 
mine correlations and evolving behaviors of multiple 
electrodes by automatically identifying a few hidden variables, 
and then to exploit their dynamics for solving the problem of 
missing observation. Correlation implies that the observed 
dimensions of multiple electrodes are not dependent. 
Therefore, missing values can be deduced from others through 
hidden variables. Evolving behavior denotes that missing 
values can be estimated effectively based on neighbors’ 
observations of next time ticks and following their moving 
trends. To evaluate the effectiveness of the proposed method 
by considering accuracy, reliability, and complexity aspects, 
this paper demonstrates the performance of imputation for 
consecutive missing observations on two real different 
datasets of electroencephalogram (EEG) signals. The 
proposed method can be effective to capture a few hidden 
variables automatically as well as to compactly illustrate how 
to learn their dynamics for solving consecutive missing values. 
Moreover, its computational time scales up linearly with the 
duration of the sequences. We compare the performance of the 
proposed method to the interpolation and missing singular 
value decomposition methods known as MSVD.  

The outline of the remainder of this paper is as follows; In 
section 2, we provide a summary of the available articles and 
research literatures related to time series with missing values. 
Section 3 describes the materials and proposed model setup. 
Section 4 illustrates detailed object experiments and 
experimental evaluations. Finally, in section 5, we summarize 
the whole paper and point out some possible future research 
directions. 

 
 

2. RELATED WORK 
 

In many real-world applications, time series have been 
given considerable attention within a variety of domains. They 
spread from network traffic data, currency exchange rates, 
sensor measurement, to biomedical and so on. In reality, the 
data set may contain missing observations since the process of 
data collection is not perfect due to poor record keeping, lost 
records, etc. Ignoring of missing data causes the loss of useful 
information of datasets. Therefore, numerous advanced filling 
mechanisms are proposed to overcome this problem in time 
series data.  

One of the most straightforward procedures is to replace 
each missing variable with simple methods such as calculating 
appropriate mean values. Another alternating method for 
filling missing values is an interpolation method, which is 
related to the handling of missing elements using a curve 
fitting, known as linear interpolation and splines. These 
methods exploit the smoothness in a single time sequence. 
They can estimate the success for a short interval of missing 
values based on continuity of the sequence. Details of these 
approaches and its applicability can be found in [9]-[11]. 
However, these methods will either become invalid or face a 
big challenge when the observation gap of missing values is 
large. Furthermore, these approaches discard any relationship 
between the variables over time.  

The well- known techniques related to dimension 
reduction and latent variables, namely Singular Value 
Decomposition (SVD) and Principal Component Analysis 
(PCA), could fill missing values through discovering 
correlations in multiple time sequences. They recover the 
possible missing values from estimation of other observations 
in one sequence of multivariate data. Many of the previous 
works has applied these methods for solving the presence of 
missing observations [12]-[14]. Kim at el. [15] proposes an 
incremental approach by updating the weights of PCA for 
every new data and the expectation-maximization to recover 
missing values. This model captured successfully correlations 
among different time sequences for imputing single missing 
value at various positions. However, this method ignores 
time-evolving patterns since its characteristics are not 
designed for tracking the ordering of the rows or the columns. 
Guha [16] identifies the correlations between multiple data 
streams by improving the discovery of correlations. They 
perform a dimensionality reduction with SVD periodically. 
However, this approach faces a challenge due to SVD 
re-computation and thus, it cannot easily handle the missing 
data. Papadimitriou [17] proposes SPIRIT model which can 
incrementally find correlations and hidden variables based on 
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PCA and uses them to recover missing values. Nati and 
Jaakkola [18] provide a simple EM algorithm that factors a 
dataset to low- rank matrices and approximate the missing 
value problem. Olga Troyanskaya [19] proposes a method by 
using an expectation-maximization-like procedure. It 
performs SVD over all complete columns, regresses 
incomplete columns against SVD to estimate missing values, 
then re-factors and re-imputes the completed data until a fix 
point is reached. This is extremely slow and only works if only 
very few values are missing. 

The recent intuitive mechanism for handling missing 
values by using a statistical model is known as the linear 
dynamical system, which can be used to estimate values for 
missing time points. Phong and Singh [20] demonstrate the 
efficiency of their method by exploring the linear dynamical 
system model for gene expression with missing values. 
Aristidou [21] uses Kalman Filter, which predicts the 
occluded marker position on human motion dataset. 
Dorfmuller and Kalman [22]-[23] show how to use the 
previous maker position and a skeletal model to estimate the 
missing marker locations using the extended Kalman Filter. 
However, these models become ineffective when the marker’s 
missing positions are held for a long period of time. 

It can be observed from the literatures that there are a 
variety of techniques available for estimating missing values 
for time series data. However, only few literatures show the 
performance on different positions for the missing data, 
randomly in particular, for long-interval consecutive missing 
values. This research aims to propose a new approach to 
handle missing values automatically. Moreover, its 
computation time is significantly considered with the linear on 
the duration of the sequences. 

 
 

3. PROPOSED METHOD 
 
In this context, a brief introduction of the Linear 

Dynamic System (LDS), also known as Kalman Filter used to 
model multiple time series, is first presented in order to 
enhance how to find the hidden dynamics in multiple EEG 
time series signals. Then, a new proposed model is built to 
impute missing values in multiple coevolving EEG time 
series. 
 
3.1 A Linear Dynamical System for EEG Time Series 

A sequence of EEG is a multi-dimensional data since 
multiple electrodes are used to record the electrical activity 
along the scalp surface. A dynamical system can be modeled 
by a sequence of multi-dimensional EEG signals, denoted by 

{ }1 2 3, , ..., TY y y y y= ,  where each vector ty denotes the 

data at each time ticks t = 1, 2, 3… T of dimensionality of M. 
This means that data from EEG time series can be presented 
by a matrix TMY × of the variables M and observed time ticks T. 
We consider EEG time series data are obtained from EEG 
signals in such a dynamical system. It builds a statistical 
model to represent the state of the hidden variables which are 
evolving to a linear transformation leading to the observed 
numerical time sequences. The model can learn the dynamics 

of the time series data [24], [25]. It captures the correlations 
among multiple electrodes by choosing a proper number of 
hidden variables. In particular, LDS for multi-dimensional 
EEG time sequence is modeled by the following equations; 

 

 1 0 0z μ ω= +                       

  1n n nz A z ω+ = ⋅ +                              

       n n ny C z ε= ⋅ + ,                                
 

 
where { }0 0, , , , ,Q A Q C Rθ μ= is the set of 

parameters. 0μ is an initial state for hidden variables of the 
whole system. Vector yn and zn denote observed data 
sequences and hidden variables at time t, respectively. The 
transition dynamic matrix A relates to the transition of the state 
from the current time tick to the next time tick with noise { }nω . 

Matrix C is the observation projection with the noise { }nε at 

each time t, meaning that the series of hidden variables zn are 
evolving over time ticks with linear transition matrix A. 
Moreover, the observed data sequences yn are generated from 
these series of hidden variables with a linear projection matrix 

C. All noise, 0, iω ω  and iε (i = 1…T) are zero-mean 

normally distributed random variables with covariance 
matrices Q0, Q and R, respectively. In the model, only the 
observation of the system is presented. The state and all the 
noise variables are hidden. Overall, the definition and 
mathematical description of symbols used in the system is 
shown in Table 1.  

 
Table 1. Definition and mathematical description of Symbol 
table 
Symbol Definition and mathematical description 

Y A multi-dimensional observation sequences, m T×
m The dimension of the observation sequence 
T Time duration of sequences 
W Missing values indication matrix, m T×  
H The dimension of hidden variables 

0μ  The Initial state for hidden variable, 1H ×  
A The Transition matrix, H H×  

C 
Projection matrix from hidden state to observation, 

m H×  
Q Transition covariance, H H×  
Q0 Initial covariance, H H×  
R Projection covariance, m m×  

Z A sequence of hidden variables, { }1 2, ,..., Tz z z  

θ  
A set including all necessary model parameters, 

{ }0 0, , , , ,Q A Q C Rθ μ=  

 
3.2 Proposed Model Setup in the presence of missing 
values 

The problem of missing time ticks will be first 
formulated in EEG data by the proposed model system. In the 

(1) 

(2) 

(3) 
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time course experiment, consider a collection of 
M-dimensional EEG time series Y of a length T with lost 
measurements; the missing values of the observations are 
indicated by matrix W. The matrix W of missing observation 
is the same size as Y and is defined as below; 
 

1
( , )

0
if i th dimensional observation of Y is observed at time t

W t i
if i th dimensional observation of Y is missing at time t

−⎧
= ⎨ −⎩

              (4) 

The time sequences are modeled based on LDS, as seen 
in the above equations (1) – (3), with an extra missing 
indication matrix W [26]. We utilize an 
expectation-maximization algorithm to impute missing 
positions through estimating their expectation of missing 
values, [ ]obsmiss YYE , conditioned on the observed values, 

where Ymiss and Yobs are  the set of variables for the missing 
values and the set of the observed values in the sequence Y, 
respectively. 

In order to handle the problem of missing values, the 
prime objective is to mine meaningful patterns via 
automatically identifying a few hidden variables so that their 
dynamics will be discovered to solve the problem of missing 
observations. This study focuses on exploiting the dynamic 
connectivity of the brain signals via two particular properties: 
namely, correlation and temporal continuity. To meet this 
problem, it needs to model the dynamics and hidden patterns 
of the observed time sequence by using sequences of hidden 
state variables Z. To model correlations, the model uses data 
sequences, which includes both observed and missing values, 
generated from a series of hidden variables via a TM × linear 
projection matrix C at each time point, shown in Fig. 1 where 
H is the number of hidden variables. Therefore, if some of the 
values are missing, they are inferred from the hidden variables 
since its mapping automatically discovers the correlations 
among the observation dimensions.  

 

 
Fig. 1. Architecture of Proposed Model Setup 

 
On the other hand, to model the temporal continuity 

property, HxH linear transition mapping A is adopted, since 
the hidden variables are time dependent with the values 
determined from the previous time ticks. This means that 
matrix A is related to the transition of the hidden variables’ 
states over time, describing how the states move forward over 
time. Thus, the next time point only depends on the current 
time point. In this case, we first set an initial state for hidden 
variables at the begining time point with the set of 

parameters { }0 0, , , , ,Q A Q C Rθ μ= . In the system, the 

joint distribution of Yobs , Ymiss , and Z is given by the 
following equation: 

( ) ∏ ∏
= =

− ⋅⋅=
T

i

T

i
iiiiobsmiss zyPzzPzPZandYYP

2 1
11 )()(),(   (5) 

 
To achieve these goals above, the proposed model is 

given to find the optimal solution to maximize the expected 
log-likelihood of the observation sequence with respect to the 
model parameters { }0 0, , , , ,Q A Q C Rθ μ= , the hidden 

variables [ ]ˆ , 1...n nz E z n T= = , and the missing 

observation [ ]obsmiss YYE .  

In practicality, in order to achieve parameter estimation, 
it is necessary to find the maximum 
likelihood ( ) ( )obsL P Yθ = . Yet, it is known to be difficult to 

maximize the data likelihood in presence of missing values. 
Therefore, the expected log--likelihood of the observation 

sequence over the parameter θ is maximized by using 
Expectation-Maximization (EM) algorithm [27], which 
iteratively maximizes the expected complete log- -likelihood 
as in equation (6). To achieve the maximum likelihood 
estimation of the model parameters, the 
expectation–maximization (EM) method for learning LDS is 
utilized. The algorithm iterates between computing the 
conditional expectation of hidden variables through the 
forward-backward procedure in E-step and updating model 
parameters to maximize its likelihood in M-step for estimating 
missing values [25]. 

 

( ) ( ) ( )

( ) ( )

( )

1
1 0 0 1 0,

1
1 1

2

1

1

;

( . )

T
Y Z

T
T

t t t n
t

T
T

t t n n
t

L Y E z Q z

z A z Q z A z

y C z R y C y

θθ μ μ−

−
− −

=

−

=

⎡= − − −⎣

− − ⋅ − ⋅

⎤− − ⋅ − ⎥
⎦

∑

∑

         (6) 

 
In summary, the proposed method is performed to 

achieve the best parameters { }0 0, , , , ,Q A Q C Rθ μ= for 

the model. The method applied in this paper conducts three 
main steps: expectation, recovering missing values, and 
maximization. In more detail, the algorithm first guesses an 
initial set of model parameters in the expectation step. It uses 
Kalman filtering and Kalman smoothing to estimate the 
hidden variables based on observation and current parameters 
for each iteration. The general idea is to use a forward- 
backward algorithm to compute the posterior expectations of 
hidden variables, );( θYzE n , tick by tick based on the 

computation of the previous time tick. Given the data with 
missing values, the estimation finds the marginal distribution 
for hidden state variables after initializing missing values to be 
a random number with interpolation method. Both prior and 
conditional distributions in the model are Gaussian, thus, the 
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posterior up to the current time tick is ),...,( 1 Tn yyzp , which 

is also Gaussian given by: 
 

ˆ( ) ( , )n n nz N Vα μ=                                                            (7) 
 
We obtain the following forward-backward propagation 

equations. The values here are ,n nVμ and Pn-1, given by:  
 

1 1
T

n nP A V A Q− −= ⋅ ⋅ +                                                    (8) 

( ) 1
1 1

T T
n n nK P C C P C R

−

− −= ⋅ ⋅ ⋅ ⋅ +                            (9) 

( ) 1n n nV I K P −= − ⋅                                                          (10) 

( )1 1n n n n nA K y C Aμ μ μ− −= ⋅ + ⋅ − ⋅ ⋅                       (11) 

 
The initial values are given by following equations: 
 

( ) 1
1 0 0

T TK Q C GQ C R
−

= +                                        (12) 

1 0 1 1 0( )K y C Aμ μ μ= + − ⋅ ⋅                                       (13) 

( )1 1 0V I K Q= − ⋅                                                            (14) 

 
Smoothing involves an initial forward recursion followed 

by a backward recursion. In the forward step, the values of the 
Kalman Filter equations are stored. In the backward step, these 
values are then used to initialize the Kalman smoother 
equations given by: 

Smoothing involves an initial forward recursion followed 
by a backward recursion. In the forward step, the values of the 
Kalman Filter equations are stored. In the backward step, these 
values are then used to initialize the Kalman smoother 
equations given by: 

 

( )1ˆ ˆn n n n nJ Aμ μ μ μ+= + ⋅ − ⋅                                     (15) 

( )1
ˆ ˆ T
n n n n n nV V J V P J+= + ⋅ − ⋅                                        (16) 

1T
n n nJ V A P−= ⋅ ⋅                                                            (17) 

 
The expectations are taken from the posterior marginal 

distribution ),...,( 1 Tn yyzp  from the propagation of 

belief. Therefore, the expectations are obtained by the 
following equations: 

 

[ ] ˆn nE z μ=                                                                       (18) 

1 1 1
ˆ ˆ ˆT T

n n n n n nE z z J V μ μ− − −⎡ ⎤ = +⎣ ⎦                                         (19) 

ˆ ˆ ˆT T
n n n n nE z z V μ μ⎡ ⎤ = +⎣ ⎦                                                   (20) 

 
In the recovering step, missing values are recovered by 

using Markov property in the graphical model from the 

estimation of hidden variables, (Fig. 1) with the following 
equations; 

 
[ ] [ ]{ } { } WjiZECZYYE jiobsmiss ∈⋅= ,(,;, ,θ               (21) 

 
In the maximization step, the algorithm updates the 

parameter newθ  by maximizing the expected log-likelihood 
using some sufficient statistics from the posterior distribution. 
To estimate the parameters, the expected log-like 

hood );( YL θ  in equation (6), with respect to the 

components of newθ , is maximized. Taking the derivatives of 
equation (6) and making them be zero provide the following 
results: 
 

[ ]0 1
new E zμ =                                                                    (22) 

[ ]0 1 1 1 1
new T TQ E z z E z E z⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦                                 (23) 

1 1
1

2 1

T T
new T T

n n n n
n n

A E z z E z z
− −

−
= −

⎛ ⎞⎛ ⎞
⎡ ⎤ ⎡ ⎤= ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠⎝ ⎠
∑ ∑                (24) 

( ) ( )1 1 1
2

1 ( )
1

T T Tnew T new T T new new T new
n n n n n n n n

n

Q E z z A E z z E z z A A E z z A
T − − −

=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦− ∑
                                                                                            (25) 

1

1 1

N T
new T T

n n n n
n n

C y E z E z z
−

= =

⎛ ⎞⎛ ⎞
⎡ ⎤ ⎡ ⎤= ⎜ ⎟⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠⎝ ⎠
∑ ∑                 (26) 

[ ] ( ) ( )
1

1 ( )
T T Tnew T new T T new new T new

n n n n n n n n
n

R y y C E z y y E z C C E z z C
T =

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦∑
                                                                                           (27) 

 
On the whole, the proposed method for solving the 

problem of missing values in EEG time series can be 
summarized as follows; 
• Estimate hidden variables Z (E-step): Given the fixed 

parameters, θ and Y containing missing values, the 
forward-backward procedure to estimate 
posterior );( θYZP  and its sufficient 

statistics ( ) ( ) ( )θθθ ;,;,; ,
1

, YzzEYzzEYzE nnnnn +  are 

used. 
• Recovering missing values: Given fixed Z, missing values 

Ymiss ( )θ;ZYE miss  using ( )θ;YzE n  are estimated. 

• Update model parameters (M-step): Given fixed Y and Z, 

new model parameters, [ ]θθ ,,log(maxarg ZYEnew ← , 
are estimated. 

 
 

4. EXPERIMENTAL EVALUATION 
 

4.1 Dataset Acquisition 
To demonstrate the effectiveness of the proposed method 

by considering accuracy, reliability, and the complexity 
aspects, we evaluate its performances in recovering 
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consecutive missing values on two real different datasets of 
EEG signals. We compare our proposed method to the 
interpolation and MSVD methods. The study is examined on 
random ranges of multiple coevolving EEG time series with 
consecutive missing values  using a variety of parameter 
settings over different real datasets.  

The first dataset is the publicly available Epilepsy EEG 
database at http://epileptologiebon-n.de/cms/frontcontent. 
php?idcat=193&lang=3&changelang=3. Further details are 
found in the work of [28]. This dataset contains no missing 
values consisting of five classes denoted by A, B, C, D, and E. 
Classes A and B are composed of segments taken from the 
surface EEG recordings that were carried out on five healthy 
volunteers. Classes C, D, and E originated from the EEG 
archive of presurgical diagnosis. Class D was recorded from 
within the epileptogenic zone. Class C was from the 
hippocampal formation of the opposite hemisphere of the 
brain. While classes C and D contained only the activity 
measured during seizure free intervals, class E contained 
seizure activity. Each of the class contained 100 single 
channels with 4,097 time points. In this study, we utilize the 
two sets named A and E from the complete dataset.  

The second dataset is taken from http://www.bbc-i.de/ 
competition/ii/. This dataset was recorded from a normal 
subject during a no-feedback session. The subject sat in a 
normal chair with relaxed arms resting on the table and fingers 
in the standard typing position at the computer keyboard. This 
BCI (self-paced) dataset contained two classes. Class label ‘0’ 
is used for upcoming left hand movements and class labels ‘1’ 
is used for upcoming right hand movements. Each class 
contained 28 EEG channels in the following order: F3, F1, Fz, 
F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, 
C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, O1, O2 
[29]. 
 
4.2 Performance Evaluation on Reconstruction Error 

To conduct our research experiment, two aspects are 
considered to assess the effective performance of the proposed 
method against MSVD and the interpolation approach. The 
comparisons are carried out based on the estimation 
performance on different amounts of entries with missing 
values.On the other way, we evaluate this problem based on a 
fixed percent of entries with missing values with different 
average missing lengths. For each experiment setup, we 
created different positions of consecutive missing observation 
on random channels of BCI and Epilepsy EEG datasets. The 
experiments are repeated 10 times in order to avoid the 
random effect.We reported the average of the mean square 
error (MSE) in order to evaluate the quality of the proposed 
method. The MSE is calculated following the 

equation:
22~ ∑∑ − ttt yyy  , where t denotes each 

time tick, ty~  is reconstructed data, and y mentions the input 
data. 

For each dataset in each experiment, the Fukunaka’s 
principle rule is used as a tool to achieve a proper number h for 
the hidden dimension of the model by taking the Singular 
Value Decomposition (SVD) of the original data 

TVSUY ⋅⋅= , where both U and V are orthonormal matrices, 
S is a diagonal matrix with singular values on the diagonal. To 
get the number of h, small singular values are typically set to 
zero. Therefore, we order the singular values, and then choose 
h at the one with the 98th percentile of the total sum of squared 
singular values.  

The comparison is based on the difference among the 
three methods’ reconstruction errors at 5%, 10%, and 15% of 
missing values, as shown in Table 2. In all of the cases, both 
the proposed method and MSVD use the same number of 
hidden variables with 98% energy; the average length of the 
consecutive missing values is 35 time points. Table 2 
demonstrates that in all different amounts of missing data over 
the range of  5%, 10%, and 15%, the reconstruction errors of 
the proposed method give the best results that have smaller 
errors than the interpolation and MSVD methods. Specifically, 
in the BCI (self-paced) dataset, the proposed method presents 
0.00483 and 0.00733 average reconstruction errors, which are 
lower than those of the MSVD and interpolation, respectively. 
On this dataset, it shows approximately 77% and 84% 
improvement compared to that of MSVD and interpolation.  

Similarly, in subject 2 of the BCI (self-paced) dataset, the 
performance of the proposed method also presents 75% and 
85% improved reconstruction against that of MSVD and 
interpolation. In the epilepsy dataset, the perfromances obatin 
higher  reconstruction errors compared to the BCI (self-paced) 
dataset since it is more complicated. However, the average 
MSE of missing imputaions also shows significant 
reconstruction with lower errors at 0.069 and 0.1495 over 
those of the MSVD and interpolation, and shows 49% and 
67% improvement over that of the  MSVD and interpolation 
on subject A. On epilepsy of subject E, Table 2 shows that the 
proposed method presents estimated values of 0.0702 and 
0.1574, which performed 49% and 68% improvements in the 
average MSE compared to MSVD and interpolation. 
 

 
Table 2. Reconstruction error over different rates of missing values 5%, 10% and 15% 

 

Dataset Class Method 
Reconstruction Error on different missing rates 

Average MSE 
5% 10% 15% 

BCI 
(Self- paced 1 

Proposed 0.00062 0.0014 0.0021 0.00137 
MSVD 0.0032 0.0067 0.0088 0.0062 
Interpolation 0.008 0.0088 0.0093 0.0087 
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2 
Proposed 0.00059 0.0013 0.002 0.0013 
MSVD 0.0027 0.0054 0.0075 0.0052 
Interpolation 0.0081 0.0087 0.009 0.0086 

Epilepsy 
 

A 
Proposed 0.0351 0.0699 0.1107 0.0719 
MSVD 0.0726 0.144 0.2065 0.14103 
Interpolation 0.122 0.2307 0.3115 0.2214 

E 
Proposed 0.0314 0.0701 0.1116 0.07103 
MSVD 0.0717 0.1434 0.2086 0.14123 
Interpolation 0.1443 0.2297 0.3113 0.22843 

 
 

Secondly, the comparision is based on the difference 
average missing length settings with fixed 10% entries 
missing values among the three methods’ reconstruction 
errors. Fig. 2 shows the efficiency of the proposed method 
based on a fixed 10% missing entries with different 
consecutive missing lengths, ranging from 10 to 100 

consecutive missing observations for BCI (self-paced) dataset 
in Fig. 2(a), and from 10 to 80 consecutive missing values for 
Epilepsy dataset in Fig. 2(b), respectively. Again, the 
proposed method performs the best reconstruction among the 
three methods with MSE increasing slightly along with the 
increasing consecutive missing length.  

 

    
 

Fig. 2. Average reconstruction errors versus different average missing lengths on BCI and Epilepsy.  
 

To test the efficiency of the proposed method, Fig. 3 
shows an intuition of qualitative reconstruction on channel 4 
from subject 1 of the BCI dataset of the three approaches. We 
demonstrate different hidden variables, which correspond to 
96%, 97%, 98%, and 99% of energy in the original dataset. In 
all of the cases, the best recovery is performed on the 98% 
energy with 100 consecutive missing time points. The 
proposed method performs 74% and 85% higher accuracy for 
reconstruction than MSVD and interpolation on the BCI 

(self-paced) dataset, respectively. In the figure, the dashed 
portion indicates original signals, the green line is the 
reconstructed signals by the MSVD method, and the red line 
depicts the reconstructed signals of our proposed method. It 
shows that our proposed method (red line) achieves the best 
reconstruction since it reaches very close to the original 
signals against MSVD and interpolation methods.  

 

 
 
 
 

(a) (b) 
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Fig. 3. Reconstructions vs. original signals 
 

Since the proposed methodology captures correlations 
via discovering a few powerful patterns as well as learning 
dynamics from multiple coevolving EEG time sequences, our 
proposed method provides better results than the compared 
approaches. 

 
4.3 Computation time performance 

The computational complexity of the proposed method is 
shown in Fig. 4. It can be observed that wall clock times lie on 
almost a straight line over the duration of sequences. The 
computation time of the proposed method increases slowly 
with the input and the time duration T of the time sequences. 
In this experiment, we use 98% energy on all sets, and the 
learning step runs at the same number of iterations equal to 20; 
we also set 10% missing values of the original dataset for each 
run together with 30 average occlusion lengths. 
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Fig. 4. Computation time versus the duration 

 
Although the proposed method presents good results in 

all cases of the experiments and linear computation time, it 
still gets a hard time because the parameters of the proposed 
method are learned by the EM procedure. It takes more time 
for iterations to converge since the computation time of 
forward-backward procedures need cubic time in the 
dimension of observations. Therefore, the time complexity of 
the proposed method will receive poor scaling with large 
dimensional data. We will improve the speedup of the 
proposed model in future study.  

 
 

5. CONCLUSION 
 
In this paper, we proposed a method to tackle the problem 

of consecutive missing values for multiple EEG time series, 
specifically on their reconstruction. The method solves 
consecutive missing values of real multi-dimensional EEG 
time series. It can also automatically discover a few useful 
patterns and learn their dynamics successfully in order to solve 
the problem with consecutive missing observations. In most 
cases, this method provides the best result compared to the 
alternative techniques such as interpolation and MSVD. On 
the other hand, performance results show almost a linear 
speedup as we increase the input of the data set.  

In this paper, we have only examined the EEG time series 
data for missing value reconstruction. For further work, the 
proposed method will be examined with other EEG time series 
mining tasks such as compressing and forecasting. 
Furthermore, we will broaden our research to involve different 
types of data such as Electrocardiography (ECG) and similar 
multiple coevolving data in the time series model. Finally, we 
will continue our exploration on the theme of mining large 
coevolving sequences with the goal of developing fast 
algorithms. 
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