• Title/Summary/Keyword: Time of flight measurements

Search Result 53, Processing Time 0.025 seconds

Evaluation of RTK Methods for Moving Vehicles and Practical Recommendations

  • Kim, Sae-Kyeol;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.253-262
    • /
    • 2021
  • Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.

Implementation of a Real-time Data fusion Algorithm for Flight Test Computer (비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현)

  • Lee, Yong-Jae;Won, Jong-Hoon;Lee, Ja-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

Analysis of Cosmic Radiation Exposure for Domestic Flight Crews in Korea

  • Ahn, Hee-Bok;Hwang, Junga;Kwak, Jaeyoung;Kim, Kyuwang
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.51-57
    • /
    • 2022
  • Cosmic radiation exposure of the flight crews in Korea has been managed by Radiation Safety Management around Living Life Act under Nuclear Safety and Security Commission. However, the domestic flight crews are excluded from the Act because of relatively low route dose exposure compared to that of international flight crews. But we found that the accumulated total annual dose of domestic flight crews is far from negligible because of relatively long total flight time and too many flights. In this study, to suggest the necessity of management of domestic flight crews' radiation exposure, we statistically analyzed domestic flight crew's accumulative annual dose by using cosmic radiation estimation models of the Civil Aviation Research Institute (CARI)-6M, Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS), and Korean Radiation Exposure Assessment Model (KREAM) and compared with in-situ measurements of Liulin-6K LET spectrometer. As a result, the average exposure dose of domestic flight crews was found to be 0.5-0.8 mSv. We also expect that our result might provide the basis to include the domestic flight crews as radiation workers, not just international flight attendants.

Evaluation of Thickness Reduction in an Aluminum Sheet using SH-EMAT (SH-EMAT를 이용한 알루미늄 박판의 두께감육 평가)

  • Kim, Yong-Kwon;Park, Ik-Kuen
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.74-78
    • /
    • 2010
  • In this paper, a non-contact method of evaluating the thickness reduction in an aluminum sheet caused by corrosion and friction using SH-EMAT (shear horizontal, electromagnetic acoustic transducer) is described. Since this method is based on the measurement of the time-of-flight and amplitude change of guided waves caused from the thickness reduction, it provides information on the thinning defects. Information was obtained on the changes of the various wave features, such as their time-of-flight and amplitude, and their correlations with the thickness reduction were investigated. The interesting features in the dispersive behavior of selected guided modes were used for the detection of thinning defects. The measurements of these features using SH waves were performed on aluminum specimens with regions thinned by 7.2% to 29.5% of the total thickness. It is shown that the time-of-flight measurement provides an estimation of the thickness reduction and length of the thinning defects.

Performance of LOB-based Emitter Localization Using Linear LSE Algorithms (선형 LSE 알고리즘을 이용한 신호원 위치 추정 성능)

  • Lee, Joon-Ho;Kim, Min-Cheol;Cho, Seong-Woo;Kim, Sang-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • In this paper, the well-known LOB-based emitter localization using linear LSE algorithm is numerically implemented and the heuristic guidelines for the parameter values to achieve 1% RMS error are presented. In the simulation, we changed the total observation durations for LOB measurements, time interval between successive LOB measurements and sensor trajectories. The effects of the time interval of LOB measurements, the time duration of the LOB measurements and the angle of flight path arc on the performance are illustrated. The dependence of the performance on the various parameters is investigated and rule-of-thumbs for the parameter values corresponding to 1% RMS error are presented for each simulation condition.

In-Flight Field Strength Measurement of KNDGPS (공역에서의 NDGPS 신호 전계강도 측정 연구)

  • Ahn, Jae-Hyung;Yoo, Byeong-Seon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • In order to determine the possibility of using NDGPS signals for flight operations, in-flight measurements of signals transmitted from various ground reference stations(RS) were conducted along the air routes of South Korea. Signal strength and signal to noise ratio(SNR) data were collected along domestic flight routes and recorded with time. By using three-dimensional geographical position data of the aircraft, signal strength data of en-route position were calculated and used to obtain scatter-plot of signal strength. These results were used to outline the effective coverage and field strength hemispheres of the selected DGPS signals.

CHARACTERIXATION OF PLASMA ION IMPLANTED SURFACES USING TIME-OF-FLIGHT SECONDARY ION MASS SPECTROMATRY

  • Lee, Yeon-Hee;Han, Seung-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.880-883
    • /
    • 1996
  • Plasma Source Ion Implantation (PSII) technique was used for the hydrophilization or hydrophobization of polymer surfaces. Polymers were modified with different plasma gases such as oxygen, nitrogen, argon, and tetrafluoromethane, and for varying lengths of treatment time. Plasma ion treatment of oxygen, nitrogen, argon and their mixtures increased significantly the hydrophilic properties of polymer surfaces. More hydrophobic surfaces of polymers were formed after the treatment with tetrafluoromethane. A study of plasma source ion implanted polymers was performed using contact angle measurements and Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). The TOF-SIMS spectra and depth profile were used to obtain the information about the treated surfaces of polymers. The permanence of this technique could be evaluated with respect to ageing time. The surfaces treated with PSII gave better stability than other surface modification methods.

  • PDF

Development of FAA AC120-63 Level C Flight Simulation Model for KA-32T (FAA AC120-63 Level C급 KA-32T 비행 시뮬레이션 모델 개발)

  • Jeon, Dae-Keun;Jun, Hyang-Sig;Choi, Hyoung-Sik;Choi, Young-Kiu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.406-412
    • /
    • 2009
  • Flight simulation model for helicopter simulator is one of the most important models which affect flight performance and handling quality. It is typical to develop the model based on the raw data and models from the helicopter designers/manufacturers. The approaches in this study were to develop the basic model based on the available resources regarding helicopter operation/maintenance and to tune and validate it based on the flight test results. The basic model was developed with maintenance manuals, flight manuals, analyses, measurements, papers and so on considering that KA-32T data could not be obtained from the manufacturer. The flight test for KA-32T was performed and the reference data for the simulation validation tests were acquired. The flight simulation model was validated to have the fidelity compatible with level C of FAA AC120-63 after comparison and tuning with flight test results.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

The transport property of direct conversion material a-Se:As film for digital radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.343-344
    • /
    • 2007
  • Carrier mobility was measured using time-of-flight (TOF) measurements to investigate the transport properties of holes and electrons in stabilized a-Se film. A laser beam with pulse duration of 5 ns and wavelength of 350 nm was illuminated on the surface of a-Se with thickness of $400\;{\mu}m$. The measured transit times of hole and electron were about $8.73\;{\mu}s\;and\;229.17\;{\mu}s$, respectively. The experimental results showed that the hole and electron drifting mobility were $0.04584\;cm^2V^{-1}S^{-1}\;and\;0.00174\;cm^2V^{-1}s^{-1}\;at\;10\;V/{\mu}m$.

  • PDF