Browse > Article
http://dx.doi.org/10.11003/JPNT.2021.10.4.253

Evaluation of RTK Methods for Moving Vehicles and Practical Recommendations  

Kim, Sae-Kyeol (Department of Mechanical Engineering, Hongik University)
Kim, Euiho (Department of Mechanical and System Design Engineering, Hongik University)
Publication Information
Journal of Positioning, Navigation, and Timing / v.10, no.4, 2021 , pp. 253-262 More about this Journal
Abstract
Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.
Keywords
GNSS; widelane; moving baseline RTK; formation flight;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takasu, T. & Yasuda, A. 2009, A Development of the lowcost RTK-GPS receiver with an open source program package RTKLIB, International symposium on GPS/GNSS
2 Odolinski, R. & Teunissen, P. J. G. 2016, Single-Frequency, Dual-GNSS versus Dual-Frequency, Single-GNSS: A Low-Cost and High-Grade Receivers GPS-BDS RTK Analysis, Journal of Geodesy, 90, 1255-1278. https://doi.org/10.1007/s00190-016-0921-x   DOI
3 Peyret, F., Betaille, D., & Hintzy, G. 2000, High-Precision Application of GPS in the Field of Real-Time Equipment Positioning, Automation in construction, 9, 299-314. https://doi.org/10.1016/S0926-5805(99)00058-8   DOI
4 Psiaki, M. L. & Mohiuddin, S. 2005, Relative navigation of high-altitude spacecraft using dual-frequency civilian CDGPS, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, 13-16 Sep 2005, pp.1191-1207.
5 Teunissen, P. J. G. 2006, The LAMBDA Method for the GNSS Compass, Artificial Satellites, 41, 89-103. https://doi.org/10.2478/v10018-007-0009-1   DOI
6 De Jonge, P. & Tiberius, C. 1996, Integer ambiguity estimation with the LAMBDA method, in GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, eds. G. Beutler, W. G. Melbourne, G. W. Hein, G. Seeber (Berlin Heidelberg: Springer), pp.280-284. https://doi.org/10.1007/978-3-642-80133-4_45   DOI
7 Li, B., Verhagen, S., & Teunissen, P. J. G. 2013a, GNSS Integer Ambiguity Estimation and Evaluation: LAMBDA and Ps-LAMBDA, in China Satellite Navigation Conference (CSNC) 2013 Proceedings, eds. J. Sun et al. (Berlin Heidelberg: Springer-Verlag), pp.291-301. http://doi.org/10.1007/978-3-642-37404-3_26   DOI
8 Montenbruck, O., Ebinuma, T., Lightsey, E. G., & Leung, S. 2002, A real-time kinematic GPS sensor for spacecraft relative navigationEin GPS Sensor zur kinematischen Relativnavigation von Raumfahrzeugen in Echtzeit, Aerospace Science and Technology, 6, 435-449. https://doi.org/10.1016/S1270-9638(02)01185-9   DOI
9 Odolinski, R., Teunissen, P. J. G., & Odijk, D. 2015, Combined GPS + BDS for short to long baseline RTK positioning, Measurement Science and Technology, 26, https://doi.org/10.1088/0957-0233/26/4/045801   DOI
10 Olsen, E. A., Park, C. W., & How, J. P. 1999, 3D Formation Flight Using Differential Carrier-Phase GPS Sensors, Navigation, 46, 35-48. https://doi.org/10.1002/j.2161-4296.1999.tb02394.x   DOI
11 Travis, W.E., Hodo, D. W., Bevly, D. M., & Hung, J. Y. 2008, Ugv trailer position estimation using a dynamic base RTK system, AIAA Guidance Navigation and Control Conference and Exhibit https://doi.org/10.2514/6.2008-7442   DOI
12 Bisnath, S., & Gao, Y. 2009, Precise point positioning, GPS world, 20.4, 43-50.
13 Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 102.B3, 5005-5017. https://doi.org/10.1029/96JB03860   DOI
14 Zhao, S., Cui, X., Guan, F., & Lu, M. 2014, A Kalman filterbased short baseline RTK algorithm for singlefrequency combination of GPS and BDS, Sensors, 14.8, 15415-15433.   DOI
15 Teunissen, P. J. G. 1997, On the GPS widelane and its decorrelating property, Journal of Geodesy, 71, 577-587. http://doi.org/10.1007/s001900050126   DOI
16 D'Amico, S. & Montenbruck, O. 2010, Differential GPS: An Enabling Technology for Formation Flying Satellites, in Small Satellite Missions for Earth Observation, eds. R. Sandau, H. P. Roeser, A. Valenzuela (Berlin Heidelberg: Springer), pp.457-465. https://doi.org/10.1007/978-3-642-03501-2_43   DOI
17 Dogra, S., Wright, J., & Hansen, J. 2005, Sea-based JPALS relative navigation algorithm development, Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, 13-16 Sep 2005, pp.2871-2881.
18 He, H., Li, J., Yang, Y., Xu, J., Guo, H., et al. 2014, Performance assessment of single-and dual-frequency BeiDou/GPS single-epoch kinematic positioning, GPS Solutions, 18, 393-403. https://doi.org/10.1007/s10291-013-0339-3   DOI
19 Li, W., Teunissen, P. J. G., Zhang, B., & Verhagen, S. 2013b, Precise point positioning using GPS and Compass observations, in China Satellite Navigation Conference (CSNC) 2013 Proceedings, eds. J. Sun et al. (Berlin Heidelberg: Springer-Verlag), pp.367-378. http://doi.org/10.1007/978-3-642-37404-3_33   DOI
20 Misra, P. & Enge, P. 2006, Global Positioning System: Signals, Measurements, and Performance (Lincoln, MA: Ganga- Jamuna Press)