• Title/Summary/Keyword: Time of Flight Method

Search Result 603, Processing Time 0.026 seconds

Cockpit Crew Scheduling using Set Partitioning Problem (집합분할모형을 이용한 운항승무원의 승무경로 일정계획)

  • 김국연;이영훈
    • Korean Management Science Review
    • /
    • v.21 no.1
    • /
    • pp.39-55
    • /
    • 2004
  • Efficient crew scheduling for cockpit crew is important in airline industry due to operational safety and cost associated with the flight duty time. Because of complexity of regulations imposed to the cockpit crew. it is complicated to generate an efficient schedule. Schedule of cockpit crew can be generated through two steps; selecting of flight patterns. and scheduling of them to the specific time horizon. Heuristic method is developed and applied with massive data in a limited time of computation. A set of flight patterns is selected from all possible flight patterns. which are generated by composing the flight leg based on regulations. by using the set partitioning problem with objective function of oversea stay cost. The selected set of flight patterns found at the first step is allocated to 4 week crew schedule to minimize the variance of total fight time assigned to each crew. The crew schedules obtained are evaluated and compared with the ones currently used in one of major airline company.

Enhancement on Time-of-Flight Camera Images (Time-of-Flight 카메라 영상 보정)

  • Kim, Sung-Hee;Kim, Myoung-Hee
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.708-711
    • /
    • 2008
  • Time-of-flight(ToF) cameras deliver intensity data as well as range information of the objects of the scene. However, systematic problems during the acquisition lead to distorted values in both distance and amplitude. In this paper we propose a method to acquire reliable distance information over the entire scene correcting each information based on the other data. The amplitude image is enhanced based on the depth values and this leads depth correction especially for far pixels.

  • PDF

A Study on the Real-Time Parameter Estimation of DURUMI-II for Control Surface Fault Using Flight Test Data (Longitudinal Motion)

  • Park, Wook-Je;Kim, Eung-Tai;Song, Yong-Kyu;Ko, Bong-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.410-418
    • /
    • 2007
  • For the purpose of fault detection of the primary control surface, real-time estimation of the longitudinal stability and control derivatives of the DURUMI-II using the flight data is considered in this paper. The DURUM-II, a research UAV developed by KARI, is designed to have split control surfaces for the redundancy and to guarantee safety during the fault mode flight test. For fault mode analysis, the right elevator was deliberately fixed to the specified deflection condition. This study also mentions how to implement the multi-step control input efficiently, and how to switch between the normal mode and the fault mode during the flight test. As a realtime parameter estimation technique, Fourier transform regression method was used and the estimated data was compared with the results of the analytical method and the other available method. The aerodynamic derivatives estimated from the normal mode flight data and the fault mode data are compared and the possibility to detect the elevator fault by monitoring the control derivative estimated in real time by the computer onboard was discussed.

Numerical Investigation on a Rotor Tip-Vortex Instability in Very Low Advance Ratio Flight

  • Chung, Ki-Hoon;Hwang, Chang-Jeon;Lee, Duck-Joo;Yim, Jong-Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.84-96
    • /
    • 2005
  • Helical tip vortex is known as stable vortex structure, however the specific frequency component of far wake perturbation induces the vortex pairing in hover and axial flight. It is expected that the tip vortex pairing phenomena may happen in transition flight and very low advance ratio flight so that inflow may be most nonuniform in the low advance ratio flight. The objectives of this paper are that a tip-vortex instability during the transition from hover into very low advance ratio forward flight is numerically predicted to understand a physics by using a time-marching free-wake method. To achieve the objectives, numerical method is firstly validated in typical axial and forward flights cases. Present scheme with trim routine can predict airloads and inflow distribution of forward flight with good accuracy. Then, the transition flight condition is calculated. The rotor used in this wake calculation is a small-scale AH-1G model. By using a tip-vortex trajectory tracking method, the tip-vortex pairing process are clearly observed in transient flight($\mu$=0.03) and disappears at a slightly higher advance ratio($\mu$=0.05). According to the steady flight simulation at $\mu$=0.03, it is confirmed the tip-vortex pairing process is continued in the rear part of rotor disk and not occurs in the front part. Time averaged inflow in this case is predicted as smooth distribution.

Study on How to Maintain the Flight Test Currency of Certification Flight Test Crew (항공기 인증비행시험요원의 비행시험 자격 유지 방안 연구)

  • Kee, Yeho
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.45-50
    • /
    • 2013
  • This is a research report about the method of how to maintain qualification of certification flight test crews. KCA(Korea Certification Agency) have completed the KC-100 airplane certification flight tests which is the first time experienced flight tests operation. After the certification flight test, it has been found that annual flying time requirement of 100 hours to the certification flight test pilot is too strict, and other several requirements to maintain the qualification of the certification test crew such as aircraft certification introduction training, initial flight test pilot and flight test engineer certification training, crew resource management training, aviation physiology training, and survival training was difficult to implement in Korean civil aviation environments. In this study, it was suggested that 30 hours of flying time for maintaining certification flight test pilot qualification could be applied to contribute for safe operation of certification flight test and the other training requirements of the certification flight test crew could be fulfilled using self made training courses, existing FAA training courses and Korean Air Force training resources. Therefore, it is recommended that the regulation of maintaining the certification flight test crew qualification should be refined to implement the requirement practically.

Iterative Attenuation Correction and Image Reconstruction Using Time-Of-Flight Positron Emission Tomography (양전자방출단층촬영기의 비행시간정보를 이용한 반복적 감쇠보정 및 영상재구성)

  • Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1371-1376
    • /
    • 2016
  • In this paper, an iterative method is proposed to perform attenuation correction and image reconstruction simultaneously for positron emission tomography, by using the time-of-flight information. Numerical simulation results are presented to demonstrate an improved performance of the proposed method in attenuation correction and image reconstruction.

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

Comparison Study of Nonlinear CSAS Flight Control Law Design Using Dynamic Model Inversion and Classical Gain Scheduling (항공기 CSAS 설계를 위한 고전적 Gain Scheduling 기법과 Dynamic Model Inversion 비선형 기법의 비교 연구)

  • Ha, Cheol-Geun;Im, Sang-Su;Kim, Byeong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.574-581
    • /
    • 2001
  • In this paper we design and evaluate the longitudinal nonlinear N(aub)z-CSAS(Command and Stability Augmentation System) flight control law in \"DMI(Dynamic Model Inversion)-method\" and classical \"Gain Scheduling-method\", respectively, to meet the handling quality requirements associated with push-over pull-up maneuver. It is told that the flight control law designed in \"DM-method\" is adequate to the full flight regime without gain scheduling and is efficient to produce the time response shape desired to the handling quality requirements. On the contrary, the flight control law designed in \"Gain Scheduling-method\" is easy to be implemented in flight control computer and insensitive to variation of the actuator model characteristics.n of the actuator model characteristics.

  • PDF

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.