• Title/Summary/Keyword: Time of Flight

Search Result 1,790, Processing Time 0.037 seconds

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

A study on the Lateral Stability of a Canard Airplane Using In-Flight Real-Time Parameter Estimation Techniques (비행중 실시간 파라미터 추정기법을 이용한 커나드 비행기의 가로안정성에 관한 연구)

  • Park, Wook-Je;Noh, Yang-Soo;Choi, Jin-Won;Moon, Jung-Ho;Hwang, Myoung-Shin;Seong, Kee-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • The Purpose of this paper is to obtain the lateral-directional controllability and stability derivatives of the Velocity-173 from the flight test data and to simulate motion of the aircraft by using In-flight Real-Time Parameter Estimation Techniques. In this paper, the results of the In-Flight Real-Time parameter Estimation Techniques are compared with the results of the Advanced Aircraft Analysis. As a result, Estimation by using In-Flight Real-Time Parameter Estimation Techniques can be done rapidly and their results are reliable.

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Designing of Dynamic Sensor Networks based on Meter-range Swarming Flight Type Air Nodes

  • Kang, Chul-Gyu;Kim, Dae-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.625-628
    • /
    • 2011
  • Dynamic sensor network(DSN) technology which is based on swarming flight type air node offers analyzed and acquired information on target data gathered by air nodes in rotation flight or 3 dimension array flight. Efficient operation of dynamic sensor network based on air node is possible when problems of processing time, data transmission reliability, power consumption and intermittent connectivity are solved. Delay tolerant network (DTN) can be a desirable alternative to solve those problems. DTN using store-and-forward message switching technology is a solution to intermittent network connectivity, long and variable delay time, asymmetric data rates, and high error rates. However, all processes are performed at the bundle layer, so high power consumption, long processing time, and repeated reliability technique occur. DSN based on swarming flight type air node need to adopt store-and-forward message switching technique of DTN, the cancelation scheme of repeated reliability technique, fast processing time with simplified layer composition.

A Study on the Optimal Flight Time According to the Amount of Fatigue (피로누적에 따른 최적 비행시간 산출에 관한 연구)

  • 이승훈;윤봉수
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.1
    • /
    • pp.41-57
    • /
    • 1998
  • Since the aircraft has a property of moving in the three-dimensional space, it may cause personally and financially critical damage in the case of an accident. Among the causes of aircraft accident, human factor has occupied about 70% of all accidents. Specially, fatigue among human's problems has been studied earlier than any other factor. Fatigue has been the cause of 75% of accidents that are related to human factor. So many studies have been conducted. But the direction of these studies mainly attach importance to the sleep loss and circadian rhythm. Limitation for flight time of ICAO is 8 hours per day, civil airlines in domestic line also adopt the limitation. But this rule is not based on human's performance but compromise between labor and management. The long-haul flight brings about a mental block to pilot. This mental block decreases performance of pilot and loses a lot of important information. So this may cause many accidents. This paper is to offer optimal flight time according to the amount of fatigue due to increasing flight time. The optimal flight time is searched through the field experiment. The experiment has adopted two methods. One is to examine pilot's objective fatigue accumulation rate through the critical fusion frequency, and another is to investigate pilot's subjective fatigue feeling through the fatigue subjective symptoms investigation table.

  • PDF

Test Setup for Flight Sensor Dynamics and Compensation of Time-delayed Position Output (비행 센서의 동특성 측정과 위치 출력의 시간 지연 보상)

  • Park, Sang-Hyuk;Lee, Sang-Hyup
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.16-20
    • /
    • 2010
  • The dynamic characteristics of flight sensors is obtained by a simple method that deploys a pendulum with a rotary encoder. The encoder output is used with kinematic relations to derive reference signals for various flight sensors, including position, velocity, attitude, and angular rate sensors as well as accelerometer and magnetic sensors. A time delay of 0.4 seconds is found in the position output of the flight sensor under investigation. A logic to compensate for the time delay using a velocity information is proposed and validated in flight tests.

Numerical Investigation on a Rotor Tip-Vortex Instability in Very Low Advance Ratio Flight

  • Chung, Ki-Hoon;Hwang, Chang-Jeon;Lee, Duck-Joo;Yim, Jong-Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.84-96
    • /
    • 2005
  • Helical tip vortex is known as stable vortex structure, however the specific frequency component of far wake perturbation induces the vortex pairing in hover and axial flight. It is expected that the tip vortex pairing phenomena may happen in transition flight and very low advance ratio flight so that inflow may be most nonuniform in the low advance ratio flight. The objectives of this paper are that a tip-vortex instability during the transition from hover into very low advance ratio forward flight is numerically predicted to understand a physics by using a time-marching free-wake method. To achieve the objectives, numerical method is firstly validated in typical axial and forward flights cases. Present scheme with trim routine can predict airloads and inflow distribution of forward flight with good accuracy. Then, the transition flight condition is calculated. The rotor used in this wake calculation is a small-scale AH-1G model. By using a tip-vortex trajectory tracking method, the tip-vortex pairing process are clearly observed in transient flight($\mu$=0.03) and disappears at a slightly higher advance ratio($\mu$=0.05). According to the steady flight simulation at $\mu$=0.03, it is confirmed the tip-vortex pairing process is continued in the rear part of rotor disk and not occurs in the front part. Time averaged inflow in this case is predicted as smooth distribution.