• Title/Summary/Keyword: Time of Collapse

Search Result 585, Processing Time 0.031 seconds

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Study on Applicability of River Revetment Design for consideration of Velocity Variation due to Meandering and Scour Effect (만곡 및 세굴 영향에 의한 유속변화를 고려한 호안설계방법 적용성 검토)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.17-25
    • /
    • 2016
  • Revetments help protect levee slopes from erosion. If the design of the revetment is not appropriate, the levee may collapse as a result of scouring due to the strong flow velocity and tractive force. Therefore, when designing a revetment, it is very important to calculate the representative velocity. However, the average velocity and depth calculated by 1-D varied flow analysis are generally applied to the design, which do not reflect the increase in velocity caused by the free and force vortex. Therefore, it is necessary to correct the representative velocity in order to ensure the stability of the revetment in a meandering channel. In this study, the applicability of the method of calculating the representative velocity considering the curve and scour was studied (by comparing it with) the average and maximum velocities determined by numerical simulation. The representative velocity corrected for the effect of the curve and scour and the maximum velocity calculated by the numerical simulation were found to match quite well. In addition, the riprap size of the gabion in the meandering and straight channels were compared by applying them to the conventional design formulas. In the future, it is necessary to perform additional numerical simulations for various rivers with different characteristics, in order to propose a method of designing a suitable revetment for Korean characteristics. At this time, the results of this study are expected to be able to be used as basic data.

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

A Study on Evaluation System of River Levee Safety Map to Improve Maintenance Efficiency and Disaster Responsiveness (하천제방의 유지관리 효율성 및 재해 대응성 향상을 위한 하천제방 안전도맵 평가체계 연구)

  • Kim, Jin-Man;Moon, In-Jong;Yoon, Kwang-Seok;Kim, Soo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.20-29
    • /
    • 2018
  • Owing to the changing climate and recent flood events, flood damage caused by river levee collapse and overflow is on the rise in Korea, making it necessary to enhance river levee maintenance technologies to deal with various flood damage scenarios. This paper proposes the evaluation system of a river-levee safety map to improve maintenance efficiency and disaster responsiveness. A river-levee safety map, indicating sliding, piping, visual inspection, scouring, and safety index of a levee fill material on a GIS map will enable the dangerous zone to be identified visually and the development of proactive measures to deal with it. This will maximize the river-levee maintenance efficiency, which is a break from traditional practice in that restoration measures are taken only after the damage has occurred. This study includes scouring and levee fill material in addition to previously-proposed sliding, piping and visual inspections. The research activities conducted in the study include 1) categorization of scouring and levee fill material based on document and data examination, 2) evaluation of sliding and piping at 5 locations on the left levee in the Nam river according to the duration time of the flood water level, and 3) evaluation of the characteristics of scouring and levee fill material at 9 locations on the left/right levee in the Nam River. The river levee safety map proposed in this study would be more useful and practical but further study on the manual for river management organization, repair and reinforcement methods, and budget is required.

Big Data-based Monitoring System Design for Water Quality Analysis that Affects Human Life Quality (인간의 삶의 질에 영향을 끼치는 수질(물) 분석을 위한 빅데이터 기반 모니터링 시스템 설계)

  • Park, Sung-Hoon;Seo, Yong-Cheol;Kim, Yong-Hwan;Pang, Seung-Peom
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • Today, the most important factor affecting the quality of human life is thought to be due to the environment. The importance of environmental monitoring systems to improve human life and improve welfare as the magnitude of the damage increases year by year due to the rapid increase in the frequency of hail, typhoons, collapse of incisions, landslides, etc. Is increasing day by day. Among environmental problems, problems caused by water quality have a very high proportion, and as there is a growing concern that the scale of damage will increase when water pollution accidents occur due to urbanization and industrialization, the demand for social water safety nets is increasing. have. In the last 5 years, 259 cases of water pollution (Han River 99, Nakdong River 31, Geum River 25, Seomjin River and Yeongsan River 19, and 85 others) have occurred in the four major river basins. Caused damage. Therefore, it is required to establish a water quality environment management strategy system based on big data that can minimize the uncertainty of the water quality environment by expanding the target of water quality management from the current water quality management system centered on the four major rivers to small and medium-sized rivers, tributaries/branches, and reservoirs. In this paper, we intend to construct and analyze a water quality monitoring system based on big data that can present useful water quality environment information by analyzing the water quality information accumulated for a long time.

Diagnostic Methods of Traumatic Tracheobronchial Injury (외상성 기관-기관지 손상의 진단 방법)

  • Son, Shin-Ah;Cho, Suk-Ki;Do, Young-Woo;Lee, Hong-Kyu;Lee, Eung-Bae
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.675-680
    • /
    • 2010
  • Background: The aim of this study was to identify the distinguishing clinicoradiologic findings of traumatic tracheobronchial injury. Material and Method: Between January 2003 and December 2009, six patients who underwent surgical repair for traumatic tracheobronchial injury due to blunt trauma were included in this study. We evaluated the mechanism of the injury, the coexisting injuries, the time until the making diagnosis and treatment, the diagnostic methods, the anatomic location of the injury and the surgical outcomes. Result: The mechanisms of injury were traffic accident and crushing forces. The frequent symptoms were subcutaneous emphysema, dyspnea and pain, and the common radiologic findings were pneumothorax, mediastinal emphysema, rib fracture and lung contusion. Only 2 patients were diagnosed by chest CT and the others were not diagnosed preoperatively. The location of injury was the trachea in 2 patients and the bronchial tree in 4 patients. There was no postoperative mortality or anastomotic leak; however, vocal cord palsy occurred in one patient. The most distinguishing sign was persistent lung collapse even though the chest tube was connected with negative pressure. Conclusion: Although it was not easy to diagnose traumatic tracheobronchial injury without a clinical suspicion, the distinguishing clinical symptoms and CT findings could help to make an early diagnosis without performing bronchoscopy.

SHRIMP Age Datings and Volcanism Times of the Igneous Rocks in the Cheolwon Basin, Korea (철원분지 화성암류의 SHRIMP 연령측정과 화산작용 시기)

  • Hwang, Sang-Koo;An, Yu-Mi;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.231-241
    • /
    • 2011
  • Cheolwon Group in the Cheolwon Basin, which lies northwest of the Gyeonggi massif, has been correlated to the Yucheon Group in the Gyeongsang Basin, but its ages and volcanic times are defined to be considerately earlier than the other one. In this study, SHRIMP zircon U-Pb ages were determined from the igneous rocks in the Cheolwon Basin. The mean ages from zircons are $115.0{\pm}1.1Ma$ in rhyolite, and $111.24{\pm}0.85Ma$ and $109.1{\pm}1.1Ma$ in granite porphyry. The minimum age is 113 Ma in the Jijangbong Tuff. Such age in the rhyolite define the intrusion time of ring dykes, suggesting a caldera collapse following eruption of the Dongmakgol Tuff. Such age in the Jijangbong Tuff represent latest volcanism as postcaldera in the basin. The volcanic rocks in the basin were erupted during late Aptian, and are correlated to the Sindong Group in the Gyeongsang Basin. The plutonism in the basin occurred during $111.24{\pm}0.85Ma{\sim}109.1{\pm}1.1Ma$, following the volcanism. The age distribution of the analyzed zircons in the Jijangbong Tuff indicates the presence of foreign zircons derived from protoliths, regarding a wide span of zircon ages from Cretaceous to Jurassic, Triassic, early and late Protozoic, and Archean. The Archean age suggests the possible presence of the Archean protoliths with such age, which have not been exposed on the surface. The age distribution with wide span suggests that its vent is located in an area that several strata with different ages piled up and intercepted with some intrusives.

Fire Resistance Performance of High Strength Concrete with 4 Deformation Factors (4변형 인자에 의한 고강도콘크리트의 내화성능 평가)

  • Lee, Tae Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.112-120
    • /
    • 2012
  • A numerical model considering the internal vaporization and the creep effect, in the form of a analytical program, for tracing the behavior of high strength concrete(HSC) members exposed to fire is presented. The two stages, i.e., spalling procedure and fire resistance time, associated with the thermal, moisture flow, creep and structural analysis, for the prediction of fire resistance behavior are explained. The use of the analytical program for tracing the response of HSC member from the initial pre-loading stage to collapse, due to fire, is demonstrated. Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member, so that the prediction method of the moisture distribution inside the concrete members at fire is developed. The validity of the numerical model used in this program is established by comparing the predictions from this program with results from others fire resistance tests. The analytical program can be used to predict the fire resistance of HSC members for any value of the significant parameters, such as load, sectional dimensions, member length, and concrete strength.

An Experimental Study on Seismic Performance Evaluation of Retrofitted Column of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재로 보강된 기둥의 내진성능평가 실험)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.21-30
    • /
    • 2013
  • As increasing number of large-size earthquake, the social interest of seismic retrofitting of RC structure is growing. Especially, the RC columns that are not reflected seismic design can not resist lateral loads by the earthquake. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. Thus, the emergency columns reinforcement method is needed. That have a fast construction time, do not cause damage to the column. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly, but in recent years, carbon fiber sheet taking advantage of FRP (Fiber Reinforced Polymer) is widely used. In this study, retrofitting effect of seismic performance of FRP seismic reinforcement, which is possible to emergency construction, was examined. Reinforced concrete specimens were constructed to experimental study. The seismic performence of specimes retrifitted with FRP seismic reinforcement were evaluated. As a result, the seismic performance of specimen reinforced with FRP seismic reinforcement has been improved.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.