• 제목/요약/키워드: Time integration

검색결과 2,753건 처리시간 0.036초

가변시간간격을 갖는 Newmark 시간적분법의 사다리꼴법칙에 대한 안정성과 정확도 (Stability and accuracy for the trapezoidal rule of the Newmark time integration method with variable time step sizes)

  • 노용수;정진태;배대성
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1712-1717
    • /
    • 1997
  • Stability and accuracy for the trapezoidal rule of the Newmark time integration method are analyzed when variable time step sizes are adopted. A new analytic approach to stability and accuracy analysis is also proposed for time integration methods with variable time step sizes. The trapezoidal rule with variable time step sizes has the "actual" unconditional stability which is the same as that of the method with constant time step sizes. However, the method with variable time step sizes is first-order accurate while the method with constant time step sizes is second-order accurate. accurate.

적응시간 간격 알고리즘을 이용한 KIM의 계산 효율성 개선 (The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm)

  • 남현;최석진
    • 대기
    • /
    • 제33권4호
    • /
    • pp.331-341
    • /
    • 2023
  • A numerical forecasting models usually predict future states by performing time integration considering fixed static time-steps. A time-step that is too long can cause model instability and failure of forecast simulation, and a time-step that is too short can cause unnecessary time integration calculations. Thus, in numerical models, the time-step size can be determined by the CFL (Courant-Friedrichs-Lewy)-condition, and this condition acts as a necessary condition for finding a numerical solution. A static time-step is defined as using the same fixed time-step for time integration. On the other hand, applying a different time-step for each integration while guaranteeing the stability of the solution in time advancement is called an adaptive time-step. The adaptive time-step algorithm is a method of presenting the maximum usable time-step suitable for each integration based on the CFL-condition for the adaptive time-step. In this paper, the adaptive time-step algorithm is applied for the Korean Integrated Model (KIM) to determine suitable parameters used for the adaptive time-step algorithm through the monthly verifications of 10-day simulations (during January and July 2017) at about 12 km resolution. By comparing the numerical results obtained by applying the 25 second static time-step to KIM in Supercomputer 5 (Nurion), it shows similar results in terms of forecast quality, presents the maximum available time-step for each integration, and improves the calculation efficiency by reducing the number of total time integrations by 19%.

충격해석을 위한 새로운 불연속 시간적분법의 개발 (Development of a New Discontinuous Time Integration Method for Transient Analysis of Impact Phenomena)

  • 조진연;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.407-412
    • /
    • 1998
  • In this work, a new time integration method is proposed using the generalized derivative concept to simulate the dynamic phenomena having sudden constraint occurring in dynamic contact/impact problems. By the adoption of the generalized derivative concept and jump assumption, discontinuity can be incorporated in time integration and as a result, the algorithm does not need any other special consideration of jumps in dynamic field variables due to sudden constraint like dynamic contact-release conditions. To observe the characteristics of the proposed time integration method, the stability and convergence analyses are carried out. In numerical tests, several dynamic contact/impact problems are analyzed by straightforward application of the proposed time integration method with the exterior penalty method.

  • PDF

New implicit higher order time integration for dynamic analysis

  • Alamatian, Javad
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.711-736
    • /
    • 2013
  • In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.

Driving Method with Variable Integration Time for Ambient Light Sensing Circuit

  • Lim, Han-Sin;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1495-1498
    • /
    • 2008
  • We proposed driving method with variable integration time for ambient light sensing. One operation period of the proposed driving method consists of several sub-integration periods with variable integration time which can enlarge dynamic range of ambient light sensing circuit. Temperature dependent characteristic of p-intrinsic-metal (p-i-m) diode can be compensated using the proposed driving method.

  • PDF

Empirical Prediction Models of 1-min Rain Rate Distribution for Various Integration Time

  • Jung, Myoung-Won;Han, Il-Tak;Choi, Moon-Young;Lee, Joo-Hwan;Pack, Jeong-Ki
    • Journal of electromagnetic engineering and science
    • /
    • 제8권2호
    • /
    • pp.84-89
    • /
    • 2008
  • In a wireless channel above microwave frequency, rain attenuation is very important. In order to predict rain attenuation, 1-min. rain rate distribution is required. This paper discusses appropriate conversion methods to estimate 1-minute rain rate from that of other integration time. Based on the measurement data filed in ITU-R WP3J including ETRI data for 6 consecutive years, distributions of rain rate with 1-, 5-, 10-, 20-, 30-minute integration time were analyzed, both on the global and regional basis, and the parametric relationship between the statistical characteristics of 1-minute and other measurement data were investigated to deduce the conversion methods. It is shown that the global model works good with good accuracy for 5-, 10-, 20-min integration time, and the global model is also applicable globally with good accuracy for 5-, 10-, 20-min integration time. The global conversion model was adopted last year as an ITU-R document for new recommendation. The regional conversion model would also be very useful for locations of similar climatic zone.

Real-time Fault Detection Method for an AGPS/INS Integration System

  • Oh, Sang-Heon;Yoon, Young-Seok;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.974-977
    • /
    • 2003
  • The GPS/INS integration system navigation can provide improved navigation performance and has been widely used as a main navigation system for military and commercial vehicles. When two navigation systems are tightly coupled and the structure is complicated, a fault in either the GPS or the INS can lead to a disastrous failure of the whole integration system. This paper proposes a real-time fault detection method for an AGPS/INS integration system. The proposed fault detection method comprises a BIT and a fault detection algorithm based on chi-square test. It is implemented by real-time software modules to apply the AGPS/INS integration system and van test is carried out to evaluate its performance.

  • PDF

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

비용-일정 통합관리를 통한 건축공사 실적관리 (Performance Management through Time-Cost Integration in Construction Project)

  • 김동진;임형철;최정석
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2001년도 학술대회지
    • /
    • pp.379-382
    • /
    • 2001
  • 국내 건설프로젝트는 공정관리와 원가관리의 이원적 관리체계를 가지고 있으며, 공정관리는 아직 그 체계가 미흡하고 상대적으로 관리의 중요도가 낮게 평가되고 있는 현실이다. 현재의 원가위주의 관리체계로는 프로젝트 진행과정상의 수행성과를 정확히 파악하기 어려우며, 이에 따라 공기지연, 공사비초과, 생산성저하 둥의 문제가 야기되고 있다. 따라서 프로젝트를 계획된 기간과 비용안에 효율적으로 완성하기 위해서는 비용과 일정의 통합관리를 통한 정확한 실적관리기법의 도입이 요구된다. 이에 본 연구에서는 실공정을 중심으로 한 실적관리를 통해 프로젝트의 성과를 정확히 파악하여 성공적 프로젝트 수행을 위한 방안으로 비용과 일정의 통합관리를 통한 실적관리 모델을 제시하였다.

  • PDF

More reliable responses for time integration analyses

  • Soroushian, A.;Farjoodi, J.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.219-240
    • /
    • 2003
  • One of the most versatile approaches for analyzing the dynamic behavior of structural systems is direct time integration of semi-discrete equations of motion. However responses computed by time integration are generally inexact and hence the corresponding errors would rather be studied in advance. In spite of the various error estimation formulations that exist in the literature, it is accepted practice to repeat the analyses with smaller time steps, followed by a comparison between the results. In this paper, after a review of this simple method and disregarding the round-off errors, a more efficient, reliable and yet simple method for estimating errors and enhancing the accuracy is proposed. The main objectives of this research are more realistic error estimation based on the concept of convergence, approximately controlling the reliability by comparing the actual rate of convergence with the integration method's order of accuracy, and enhancement of reliability by applying Richardson's extrapolation. Starting from the errors at specific time instants, the study is then generalized to cases in which the errors should be estimated and decreased at specific events e.g. peak responses. Numerical study illustrates the efficacy of the proposed method.