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Development of a New Discontinuous Time Integration Method

for Transient Analysis of Impact Phenomena

Jin Yeon Cho, Seung Jo Kim

ABSTRACT

In this work, a new time integration method is proposed using the generalized derivative concept to
simulate the dynamic phenomena having sudden constraint occurring in dynamic contact/impact problems.
By the adoption of the generalized derivative concept and jump assumption, discontinuity can be
incorporated in time integration and as a result, the algorithm does not need any other special
consideration of jumps in dynamic field variables due to sudden constraint, like dynamic contact-release
conditions. To observe the characteristics of the proposed time integration method, the stability and
convergence analyses are carried out. In numerical tests, several dynamic contact/impact problems are
analyzed by straightforward application of the proposed time integration method with the exterior penalty

method.

I. Introduction

To simulate the contact/impact problems, several
studies have been carried out and it has been pointed out
that the impenetrability condition alone in the contact area
is not sufficient in the numerical simulations of dynamic
contact/impact problems. For the purpose, Hughes et al.!
devised the discrete dynamic contact/impact conditions
for lumped mass case and enforced the conditions. Taylor
and Papadopoulos’ assumed that the velocities and
accelerations on the contact points are independent of the
displacements in Newmark time integration method and
enforced the velocity and the acceleration compatibility.
Lee’ proposed iterative scheme for satisfying the velocity
and the acceleration compatibility on the contact surface
under the constant average acceleration method.* The
sudden constraint for dynamic impenetration induces the
jumps in dynamic field variables and this makes it
difficult to satisfy the velocity and the acceleration
compatibility between target and impactor under discrete
time integration such as Newmark method. As a result,
straightforward application of the impenetrability
condition without any other treatment produces
undesirable oscillations. This fact is somewhat different
issue in solving the static contact problems.

In this work, a new discontinuous time integration
method is presented to overcome this trouble arising in the
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numerical simulation of the dynamic contact/impact
problems.

Il. Discontinuous Time Integration Method

1. Discrete Operator for Time Integration

In the development of time integration method, the
concept of the generalized derivative in distribution
theory’ and jump assumption are considered together
since the definition of generalized derivative can provide
the meaning of derivative even for a discontinuous
distribution like Dirac delta function.’ The definition of
generalized derivative of distribution is constructed
through the integration-by-parts. By the procedure, the
difficulty of differentiation of a distribution is transferred
to the differentiation of a test function. Using the concept,
generalized relations for displacement u(f) ~ velocity v(£)
and velocity v(f) ~ acceleration a(¢) are constructed by
integration-by-parts formula and jump assumptions as
shown below.

! 1o,
f’w’vdt:—j’w’udt+w’u
o o

:’ for all w(s)

&)

Y wadt = —_r’ w’vdt+w7v|” for all w(r)
o 1o

u(te) # u(tg), v{z,) = v(z; ), and a(s,) = a(ry)
where the jump conditions at the initial time #, are
assumed for the natural imposition of abrupt loading.
Superscript (+) denotes the right limt of time #, as shown
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in Fig. 1. The test function is denoted by w. In contrary
with dynamic field variables ( ie. u, v, and a ), test
function w is assumed to be continuous at ¢, to enforce the
effect of initial condition. As a result, the above relations
incorporates the jump due to shock loading condition.

For the temporal approximation, time domain of
investigation is restricted to [£,=t;, £,+;=17] and the linear
Lagrange interpolation functions ; are used for
approximating displacement u, velocity v, acceleration a,
and test function w. The approximation vectors defined on
an interval 1, <t<t,, =¢+At are written in the following

forms.
w0y =y, (Ou,, V() =y, ()Y,
a() = W.‘(t)a:n w() =y, (t)w:,
where the summation convention is
(oY and(s) denote field values at time i ands,,,
respectively. They are shown in Fig. 1. For a higher order
approximation, hlgher order interpolation functions can be
used as in Kim et al.% By the substitution of interpolating
functions (2) into equation (1), approximated relations for
time derivative are obtained. The relations are written as
follows through reordering.

2
i=0,1) @
used for i and

For all w' (i=0, 1),
.[""V?."I’/wi'ru’/'dt - w’ul = —J.I""y/,.y/jw:rvf,dt - wTul
e ‘ L n n
I"" Wy ,W, vidi— wrvl = —I Ty ,w, aldt- wTv|
o ’rnl t IPI

u(tn) = “L—l » v(t, )= v:,—l >a(t,) = aLl , W)= Wg

u(iﬂfl) =u,, v(t,,) = v, a(t,)= a, w(t,)=Ww,
where the summation convention notation is used.
In equation (3), the dynamic field variables u, v, and a
contain the discontinuities at the initial time ¢ ( =¢,). The
u',, v\, and a!_ are the given initial vector obtained
from the previous time step. The effect of the initial
condition is weakly imposed via ), vi,, and a,_.
Since equation (3) must hold for all w,, it can be written
in simplified matrix form as

<i>U =dV,, +0U,
n+l (4)

V,.=PA, , +0OV,

={A2’,u"}’ Vo= b A= b
The alternative forms for dlsplacement-ve10c1ty and
velocity-acceleration relations are obtained by the
inversion.

where U,

U, =9V, +¥,V, +JU, )
vn+l = \*IAIH’I + \}'DA’I + Jvn

where F=&"'0, ¥, =0, J=0"0. Using the discrete
operators of equation (5), numerical time integration

algorithm is constructed with the dynamic equilibrium
equation.

),

O

Time

T Nia=t

=1 " 1, =1,

Fig. 1 Description of time domain and jumps of variables

2. Numerical Time Integration Algorithm

The dynamic equilibrium equation of a dynamic
system discretized in space domain is given as follows.

ma+cv+ku="f (6)

where m , ¢, and k are mass, damping, and stiffness

matrices, respectively. External force vector is denoted by

f. With the discrete operator (5), the dynamic equilibrium

equations at the inner time steps (i.e. ¢ and ¢,,,) are used

+
n

to obtain a time integration algorithm.

ma’ +ev) +ku, =f, (i=0,1) 0]
Using the matrix notation, it can be denoted as
MA,, +CV,, +KU,, =F,, ®)

where M, C, and K are block d1agonal matrices for mass,
damping, and stiffness, respectively and F denotes the
forcing vector. To obtain the dynamic field variables A,.,
V .1, U uey, it is sufficient to solve the equations (5) and
(8), simultaneously. As a result, the numerical time
integration algorithm is reduced to solving the following
system of algebraic equations.

For the given initial conditions A,,V,,U, ,

find A,,,V,.,U,. of thenexttime step such that

n+l? T nel?
u,, —‘PV +‘~PV +JU,

n+l
v, =‘PA,,1+‘YA +JV, ©))
MA, , +CV, +KU

The system of algebraic equations for time stepping
numerical integration can be rewritten by predictor-
corrector form. The detail algorithm construction
procedure is similar as in the paper of Kim et al.’ The
predictor-corrector algorithm based on displacement form
is as follows.

i) Calculate
Set A,=1{0",a]}",

a, such that ma,+cv,+ku, =f;
={OT’V(€}T’ ={0Tru(11.}r

i) Calculate K¥ =M¥?+C¥"'+K and K¥ -
iii) Do n=0

Al =-F YA, ¥,
Predict (T, + 7)YV, (10)
Vi = FE,Y, - ¥,
Caloulate | RS = B = MAL, - CV.2
alculate o (1
U, =K% R
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A, =AY +¥7U
Correct e ! (12)
P V,.l'n +¥7U,,
Set n=n+l
Continue

{}(u)

A+l

where A, and have the meaning of predictors for

n+l
acceleration and velocity, respectively. After the
initialization and predictor stage, the displacements are
obtained via equation (11). The acceleration and velocity
are corrected by the correction equation (12).

3. Stability and Accuracy Analysis

To guarantee the unconditional stability of a time
integration algorithm®, all the magnitudes of amplification
factors of the algorithm (i.e. magnitude of eigenvalue)
must be less than or equal to 1. The Fig. 2 shows the
magnitude of amplification factor(spectral radius). From
Fig. 2, it is shown that the proposed method is
unconditionally stable because all the magnitudes of
amplification factors are less than or equal to 1. Moreover,
the method decays out the high frequency responses
compared to time step A¢ (i.e. A#T > 1) since the
amplification factor is zero in that region. The property
gives filtering effect of high frequency noise.

1.0 —T-.W

g |

Q

ol

= 08 RS {1

s

=4

©

K=

=3 i i1 i L4

z 0.6 T

€

<

g SRt

el

®

]

.3 0.2 b+ - R

2 N

Q.

5 1 A ! SR
0.0 L] L LD L1l L — LU
1E-3 1E-2 1E-% 1E+0 1E+1 1E+2 1E+3

Normalized time step (dt/T }
Fig. 2 Spectral radius vs. normalized time step

To observe the accuracy of the proposed time
integration method, the free-oscillation problem with unit
mass and stiffness is solved and the amplitude decay error
and period elongation error*’ are shown in Fig. 3. The
slope of curve is the order of convergence. The results
show that the proposed method has the third-order
convergence in amplitude and the fourth-order
convergence in period. Thus it can be concluded that the
proposed method (linear approximation in time) has the
third-order convergence at least in combined cases and is
more accurate than the Newmark constant average
acceleration method which has the second-order
convergence. In Fig. 4, the time domain response of
free-oscillation system is given and compared with exact
solution and the result obtained by the constant average

acceleration. It crearly shows that the proposed method is
much more accurate than the Newmark constant average

acceleration method.
1E-1 puy

—&@— Amplitude Decay Error
1€-2

—— Period Elongation Erro

Error Norm

Normalized time step ( dt/T )
Fig. 3 Log-scale plot of error norm vs. normalized time
step

20 [—S— Newmark Mathod (At = /5)
—&— PresentMethod (At =m/5)

I Exact Salution

0.5 /
ol A AL L IR A
NRIVERIYARE AN

Displacement

0.00 3.14 6.28 9.42 12.57
Time
Fig. 4 Comparison of time domain responses of free-
oscillation problem

15.71  18.85 21.99

lil. Dynamic Contact/Impact Problems

1. Variational Formulation of Impact Problems

Consider an elastic body @ with a boundary T
impacted by a rigid body R in two-dimensional space.
Then the dynamic process of system is described by the
governing equations for each body. The impenetrability
condition® on the contact surface can be written by the
inequality equation.

un<s(x,q,0) on I'¢

(13)
where n is outward unit normal vector on I, and s

denotes contact gap. Coordinate, displacement of target,
displacement of impactor and rotation of impactor are
denoted by x, u, q, and 6. In contact boundary the normal
traction component is negative if there is contact. The
tangential traction vector on contact boundary is zero with
the assumption of no friction. The variational form is
derived from the principle of virtual work. In the
variational formulation, both the rigid impactor and solid
target are incorporated and penalized external virtual
work from the exterior penalty method® is added in order
to satisfy the contact condition. Then the equilibrium
equation can be written as the following variational form.
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fypisunsfo s
-fnf-S udQ—J'rf-a udS
+(mg G- fo) S q+(1,6—N,)-60

[ wn-s)" s uds =0 (14)

1 ds
_] n—-5)" 2.5 qdS
+5,, .fr(_ (u-n—3s) dq q

. ds
—Irc (4 n—3s) d—9-59dS

where p is density, o is stress, and ¢ is traction. Subscripts
D and F denote displacement and force boundary,
respectively. m,, fp, I,, and N, denote mass, applied
force, moment of inertia, and applied moment of the
impactor, respectively. y*(x)=maxfy(x),0} is a non-
differentiable function and ¢, is a penalty parameter. The

penalty terms in equation (14) make the problem
nonlinear. The normal traction component on the contact
boundary can be obtained by

(15)

1
no-n=——:q(un-s)"
SP

2. Finite Element Approximation and Application of
Time Integration

For the finite element approximation, the coordinate x,
displacement #, and the strain £ in an element are
interpolated by n-node isoparametric plane strain element.

xzzn:(b,x, =er,u=i¢, u,=Hu,c =‘ZB.-“. = Bu, (16)
i i il

Using equations (14) and (16), the discretized equation
can be obtained by assembling the element matrices and
the equation of rigid impactor.

mii+(k+LkN(u))u=f+-l—fN(u) an
SP EP
where roman face u denotes global displacement vector
and m, k, f mean global mass, stiffness matrices and force
vector, respectively. The trapezoidal rule® is used instead
of the Gauss quadrature rule in numerical integration of
ky and fy. To obtain the time dependent behavior of the
dynamic system, the discretized governing equation (17)
is integrated directly by the developed time integration
method in the previous section without additional
constraint like contact-release condition or special
modification. The equilibrium equations at the inner time
step (i) of time interval [, ¢,,,] are written as shown

below.
ma) +(k +;1—k,,,(uf,))uj, =f! +£LfN(Uf.),i =0,1 (18)

P P

n+l

By matrix form, it is rewritten by using the notation in
previous section.

MA,,, +(K+Ky(U, DU, =F,  +F(U,.,) (19)

For the time integration, it is suffice to solve the system of
equations (5) and (19). As a result, direct application of
the proposed time integration method to the equation (19)
yields the following fully discretized dynamic equilibrium
equation.

(K+Ky(U, WU, =E,_, +F(U,,)

where K=M¥?+K and
F,.=F, +M(P'FA, +(TF,+ POV, + TUU,)

n+l
To solve the system of nonlinear algebraic equations, the
successive iteration scheme® is used. Application of the
successive iteration scheme yields the system of equations
for iteration as follows.
(K+Ky(UE)HU +Fy (U @D
where & denotes iteration number in each time step.
Relative error of displacement is used as convergence
criterion. Iteration is carried out until the relative error is

less than the given tolerance 107,

(20)

® _f

n+l n+l

IV. Numerical Simulations

By the developed computer code based on the fully
discretized equation (21), several dynamic contact/impact
problems are computed. In the numerical simulations, the
examples are compared with the results of Newmark
constant acceleration method to show the accuracy and
stability of the proposed algorithm.

1. Bar Impact
To check the validity of the developed code for

analyzing the dynamic contact/impact problem, the typical
bar impact problem in Fig. 5 is analyzed.

Plane of symmetry
I E
1
8
T L T g g

Fig. 5 Impact of two identical bars

1 L

The results are compared with the analytic solution.
Two hundred plane strain elements (4 node isoparametric
element) are used and time step size is 1 psec. Since the
problem has symmetric nature, one side of impact bar is
discretized. The material properties and the dimensions
for the problem are as follows : E = 100 GPa, A=2 cm,
g=0 cm, p=1000 kg/mS, L=30 cm, v,=10 m/sec, where E
is Young’s modulus, A is thickness(cross section area per
unit length), g is initial gap, L is length, and v, is the initial
velocity of bar. In simulation of bar impact, Poisson’s
ratio v is set to be 0. The contact force obtained by
analytical method is 2x10° N at 0 psec< ¢ < 60 psec and
zero at ¢ > 60 psec.

The contact force histories shown in Fig. 6 are the
results of computation by the direct application of
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Newmark constant average acceleration method for

several penalty parameters.
6E+6

Penaity #1.e-12 - Penally #1.6-15

Penalty #1.e-17

—4@)— Penalty #1.¢-13
——a— Ponalty #1.e-14

4E+6

Contact Force (N)
™

I

0
0 2E-5 4E-5 BE-5 BE-5 0 2E-5 4E-5 6E-5 8E-5

i

il
Time (sec) Time (sec)

Fig. 6 Contact force history of bar impact using Newmark
constant average acceleration method
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Present method

—O— Penalty #1.6-18

2E+6

Contact force (N)

1E+6 -

0 I Il
0 2E-5 4E-5 8E-5 BE-5

Time (sec)
Fig. 7 Contact force history of bar impact using the
present time integration method.
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Fig. 8 Displacement history of contact node (bar impact)
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Fig. 9 Velocity history of contact node (bar impact)

8.0E-5

From the results, it is observed that the direct use of
Newmark constant average acceleration method without
additional constraint like contact-release condition
produces undesirable oscillation.® It is also observed that
the oscillation increases as the penalty parameter is
decreased.’

However, the direct use of proposed method gives
stable solution in spite of smaller penalty parameter of
l.e-18 as shown in Fig. 7. In Fig. 8 and 9, the
displacement and the velocity of contact node are plotted.
For the Newmark case, the results of penalty parameter of
1.e-13 are presented, since the contact force of that is not
oscillatory. The result in Fig. 8 shows that penetration
occurs in Newmark case, however, the proposed method
does not allow the penetration. It is observed in Fig. 9 that
the proposed method successfully describes the velocity
jump at time r=0. From the results, it can be verified that
the proposed method is adequate in dynamic contact/
impact problems.

2. Impact of Isotropic Solid with Rigid Cylinder

As the second example, the impact behavior of solid
block with rigid cylinder is simulated by both of the
Newmark constant average acceleration method and the
proposed method. The material properties and the
dimensions for the model problem are as follows :
p=2710kg/m’, E=70Gpa, v=0.3, L=3cm, A=lcm,
m=65.8g, vo=10m/sec, R=1 cm, where m is the mass of
impactor, v is the initial velocity of impactor, and R is the
radius of impactor. Total number of nodes in finite
element model is 1681 and
element number is 1600.
For the time integration,
0.2 psec of time step size
is used. Bottom is fixed in
y-direction and both sides
are fixed in x-direction.
In simulation, symmetric
condition is utilized. The
finite element model used
in the analysis is shown in
Fig. 10.

Fig. 11 shows contact force history. It is observed that
the results by Newmark method show numerical
instability in penalty parameter of l.e-16, whereas the
proposed method gives stable solution in smaller penalty
parameter of 1.e-18.

Displacement and velocity of rigid cylinder(impactor)
and contact node(target) are shown in Fig. 12 and 13,
respectively. Direct application of Newmark method
allows penetration in penalty parameter of 1.e-15 which
gives feasible contact force. Moreover it produces
undesirable oscillation in velocity field. However, the
impenetrability condition and velocity compatibility at
contact region are precisely satisfied by the proposed

Fig. 10 Finite Element Model

- 411 -



method. Especially, if the proposed method is used, the
velocity jump at the outset of impact is numerically
realized due to the intrinsic formulation containing the
jump discontinuity.

—O3— Present {p# 1.e-18)

6E+5 Prasent(p#?.e-18)
N.M. (p# 19-13)
NN (p# 1e-14)
N.M. (p# 1.¢-15)

N.M. (p# 1.0-18)

3344

4E+5

2E+5 + v

Contact Force (N)

0
0 2E-6 4E-6 6E-6 0 2E-6 4E-6 6E-6

Time (sec) Time (sec)
Fig. 11 Contact force history under impact between solid
block and rigid cylinder
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Time (sec) Time (sec)

Fig. 12 Disptacement history of contact node A and rigid
cylinder

S s5f
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o By Newmark Method
g -10 Target (p# 1.0-15} Present (penalty# 1.e-18}
—d— Target {p#1.e-16) —@— Impactor
-15 —E&— Impactor (p# 1.6-15) B S Target
20 -—‘A— Impactor (p# 1.0-16) L \ . \
0 2E-6 4E-6 6E-6 0 2E-6 4E-6 6E-6 BE-6
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Fig. 13 Velocity history of contact node A and rigid
cylinder

V. Concluding Remarks

A new time integration algorithm for the dynamic
phenomena having sudden constraint occurring in
dynamic contact/impact analysis is developed using the
concept of generalized derivative. Using the generalized
derivative concept and jump assumption, the jump
discontinuity can be naturally incorporated in numerical

time integration.

To observe the characteristics of the proposed time
integration method, the stability and convergence analyses
are carried out. The analyses proves that the proposed
method gives unconditional stability and the third order
accuracy at least. In numerical examples, several dynamic
contact/impact problems are analyzed by straightforward
application of the proposed time integration method with
the exterior penalty method. The simulation results are
compared with the results of computation by the Newmark
constant average acceleration method. From the tests, it
has been verified that the proposed time integration
method can be used successfully in the numerical
simulations of dynamic contact/impact phenomena.
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