Browse > Article
http://dx.doi.org/10.12989/sem.2013.48.5.711

New implicit higher order time integration for dynamic analysis  

Alamatian, Javad (Civil Engineering Department, Mashhad Branch, Islamic Azad University)
Publication Information
Structural Engineering and Mechanics / v.48, no.5, 2013 , pp. 711-736 More about this Journal
Abstract
In this paper new implicit time integration called N-IHOA is presented for dynamic analysis of high damping systems. Here, current displacement and velocity are assumed to be functions of the velocities and accelerations of several previous time steps, respectively. This definition causes that only one set of weighted factors is calculated from the Taylor series expansion which leads to a simple approach and reduce the computational efforts. Moreover a comprehensive study on stability of the proposed method i.e., N-IHOA compared with IHOA integration which is performed based on amplification matrices proves the ability of the N-IHOA in high damping vibrations such as control systems. Also, wide range of numerical examples which contains single/multi degrees of freedom, damped/un-damped, free/forced vibrations from finite element/finite difference demonstrate that the accuracy and efficiency of the proposed time integration is more than the common approaches such as the IHOA, the Wilson-${\theta}$ and the Newmark-${\beta}$.
Keywords
numerical dynamic analysis; higher order time integration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hibler, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improver numerical dissipation for time integration algorithm in structural dynamics", Earthq. Eng. Struct. Dyn., 5, 283-292.   DOI
2 Hoff, C. and Taylor, R.L. (1990), "Higher derivative explicit one step methods for non-linear dynamic problems. Part I: Design and theory", Int. J. Numer. Meth. Eng., 29, 275-290.   DOI
3 Hulbert, G.M. (1994), "A unified set of single-step asymptotic annihilation algorithms for structural dynamics", Comput. Method. Appl. Mech. Eng., 113, 1-9.   DOI   ScienceOn
4 Hulbert, G. and Chung, J. (1996), "Explicit time integration algorithm for structural dynamics with optimal numerical dissipation", Comput. Method. Appl. Mech. Eng., 137, 175-188.   DOI   ScienceOn
5 Kadkhodayan, M., Alamatian, J. and Turvey, G.J. (2008), "A new fictitious time for the dynamic relaxation (DXDR) method", Int. J. Numer. Meth. Eng, 74, 996-1018.   DOI   ScienceOn
6 Katona, M. and Zienkiewicz, O.C. (1985), "A unified set of single step algorithms Part 3: The beta-m method, a generalization of the Newmark scheme", Int. J. Numer. Meth. Eng, 21, 1345-1359.   DOI   ScienceOn
7 Keierleber, C.W. and Rosson, B.T. (2005), "Higher-Order Implicit Dynamic Time Integration Method", J. Struct. Eng., ASCE, 131(8), 1267-1276.   DOI   ScienceOn
8 Kim, S.J., Cho, J.Y. and Kim, W.D. (1997), "From the trapezoidal rule to higher order accurate and unconditionally stable time-integration method for structural dynamics", Comput. Method. Appl. Mech. Eng., 149, 73-88.   DOI   ScienceOn
9 Liu, Q., Zhang, J. and Yan, L. (2010), "A numerical method of calculating first and second derivatives of dynamic response based on Gauss precise time step integration method", Euro. J. Mech. A/Solids, 29, 370-377.   DOI   ScienceOn
10 Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using new higher order predictor-corrector method", J. Eng. Comput., 25(6), 541-568.   DOI   ScienceOn
11 Rezaiee-Pajand, M. and Alamatian, J. (2008), "Nonlinear dynamic analysis by Dynamic Relaxation method", J. Struct. Eng. Mech., 28(5), 549-570.   DOI   ScienceOn
12 Rezaiee-Pajand, M., Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", Proceeding of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224, 2097-2108.   DOI   ScienceOn
13 Rezaiee-Pajand, M., Sarafrazi, S.R. and Hashemian, M. (2011), "Improving stability domains of the implicit higher order accuracy method", Int. J. Numer. Meth. Eng., 88, 880-896.   DOI   ScienceOn
14 Smolinski, P., Belytschko, T. and Neal, M. (1988), "Multi time step integration using nodal partitioning", Int. J. Numer. Meth. Eng., 26, 349-359.   DOI   ScienceOn
15 Soares, D. and Mansur, W.J. (2005), "A frequency-domain FEM approach based on implicit Green's functions for non-linear dynamic analysis", Int. J. Solid. Struct., 42(23), 6003-6014.   DOI   ScienceOn
16 Tamma, K.K., Zhou, X. and Sha, D. (2001), "A Theory of development and design of generalized integration operators for computational structural dynamics", Int. J. Numer. Meth. Eng., 50, 1619-1664.   DOI   ScienceOn
17 Wang, M.F. and Au, F.T.K. (2009), "Precise integration methods based on Lagrange piecewise interpolation polynomials", Int. J. Numer. Meth. Eng., 77, 998-1014.   DOI   ScienceOn
18 Wieberg, N.E. and Li, X.D. (1993), "A post- processing technique and an a posteriori error estimate for the Newmark method in dynamic analysis", Earthq. Eng. Struct. Dyn., 22, 465-489.   DOI   ScienceOn
19 Wood, W.L. (1984), "A unified set of single step algorithms Part 2: Theory", Int. J. Numer. Meth. Eng., 20, 2303-2309.   DOI   ScienceOn
20 Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "A alpha modification of Newmark's method", Int. J. Numer. Meth. Eng., 15, 1562-1566
21 Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39, 4199-4214.   DOI   ScienceOn
22 Zhang, Y., Sause, R., Ricles, J.M. and Naito, C.J. (2005), "Modified predictor-corrector numerical scheme for real-time pseudo dynamic tests using state-space formulation", Earthq. Eng. Struct. Dyn., 34, 271-288.   DOI   ScienceOn
23 Zhou, X. and Tamma, K.K. (2004), "Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics", Int. J. Numer. Meth. Eng., 59, 597-668.   DOI   ScienceOn
24 Zienkiewicz, O.C., Wood, W.L. and Taylor, R.L. (1984), "A unified set of single step algorithms Part 1: General formulation and applications", Int. J. Numer. Meth. Eng., 20, 1529-1552.   DOI   ScienceOn
25 Zuijlen, A.H.V. and Bijl, H. (2005), "Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations", Comput. Struct., 83, 93-105.   DOI   ScienceOn
26 Alamatian, J. (2012), "A new formulation for fictitious mass of the dynamic relaxation method with kinetic damping", Comput. Struct., 90-91, 42-54.   DOI   ScienceOn
27 Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct, 85, 437-445.   DOI   ScienceOn
28 Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct, 83, 2513-2524.   DOI   ScienceOn
29 Chung, J. and Hulbert, G. (1993), "A time integration method for structural dynamics with improved numerical dissipation: the generalized $\alpha$-method", J. Appl. Mech., 30, 371-384.
30 Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw Hill, New York.
31 Felippa, C.A. (1999), Nonlinear Finite Element Methods, http://www.colorado.edu /courses.d /nfemd/.
32 Fung, T.C. (1997), "Third order time-step integration methods with controllable numerical dissipation", Commun. Numer. Meth. Eng., 13, 307-315.   DOI   ScienceOn
33 Fung, T.C. (1998), "Complex-time step newmark methods with controllable numerical dissipation", Int. J. Numer. Meth. Eng., 41, 65-93.   DOI   ScienceOn
34 Gobat, J.I. and Grosenbaugh, M.A. (2001), "Application of the generalized-α method to the time integration of the cable dynamics equations", Comput. Method. Appl. Mech. Eng., 190, 4817-4829.   DOI   ScienceOn
35 Loureiro, F.S. and Mansur, W.J. (2010), "A novel time-marching scheme using numerical Green's functions: A comparative study for the scalar wave equation", Comput. Method. Appl. Mech. Eng., 199, 1502-1512.   DOI   ScienceOn
36 Mancuso, M. and Ubertini, F. (2002), "The Norsett time integration methodology for finite element transient analysis", Comput. Method. Appl. Mech. Eng., 191, 3297-3327.   DOI   ScienceOn
37 Mickens, R.E. (2005), "A numerical integration technique for conservative oscillators combining non-standard finite differences methods with a Hamilton's principle", J. Sound. Vib., 285, 477-482.   DOI   ScienceOn
38 Modak, S. and Sotelino, E. (2002), "The generalized method for structural dynamic applications", Adv. Eng. Softw., 33, 565-575.   DOI   ScienceOn
39 Paz, M. (1979), Structural Dynamics: Theory and Computation, McGraw Hill, New York.
40 Pegon, P. (2001), "Alternative characterization of time integration schemes", Comput. Method. Appl. Mech. Eng., 190, 2701-2727.
41 Penry, S.N. and Wood, W.L. (1985), "Comparison of some single-step methods for the numerical solution of the structural dynamic equation", Int. J. Numer. Meth. Eng., 21, 1941-1955.   DOI   ScienceOn
42 Rama Mohan Rao, M. (2002), "A parallel mixed time integration algorithm for nonlinear dynamic analysis", Adv. Eng. Softw., 33, 261-271.   DOI   ScienceOn
43 Regueiro, R.A. and Ebrahimi, D. (2010), "Implicit dynamic three-dimensional finite element analysis of an inelastic biphasic mixture at finite strain", Comput. Method. Appl. Mech. Eng., 199, 2024-2049.   DOI   ScienceOn
44 Rezaiee-Pajand, M. and Alamatian, J. (2008), "Implicit higher order accuracy method for numerical integration in dynamic analysis", J. Struct. Eng., ASCE, 134(6), 973-985.   DOI   ScienceOn