• Title/Summary/Keyword: Time graph

Search Result 946, Processing Time 0.025 seconds

A Technique for Detecting Interaction-based Communities in Dynamic Networks (동적 네트워크에서 인터랙션 기반 커뮤니티 발견 기법)

  • Kim, Paul;Kim, Sangwook
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.357-362
    • /
    • 2016
  • A social network or bio network is one of the complex networks that are formed by connecting specific relationships between interacting objects. Usually, these networks consist of community structures. Automatically detecting the structures is an important technique to understand and control the interaction objects. However, the topologies and structures of the networks change by interactions of the objects, with respect to time. Conventional techniques for finding the community structure have a high computational complexity. Additionally, the methods inefficiently deal with repeated computation concerning graph operation. In this paper, we propose an incremental technique for detecting interaction-based communities in dynamic networks. The proposed technique is able to efficiently find the communities, since there is an awareness of changed objects from the previous network, and it can incrementally reuse the previous community structure.

Finding the Workflow Critical Path in the Extended Structural Workflow Schema (확장된 구조적 워크플루우 스키마에서 워크플로우 임계 경로의 결정)

  • Son, Jin-Hyeon;Kim, Myeong-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.138-147
    • /
    • 2002
  • The concept of the critical path in the workflow is important because it can be utilized In many issues in workflow systems, e.g., workflow resource management and workflow time management. However, the critical path in the contest of the workflow has not been much addressed in the past. This is because control flows in the workflow, generally including sequence, parallel, alternative, iteration and so on, are much more complex than those in the ordinary graph or network. In this paper we first describe our workflow model that has considerable work(low control constructs. They would provide the sufficient expressive power for modeling the growing complexities of today's most business processes. Then, we propose a method to systematically determine the critical path in a workflow schema built by the workflow control constructs described in our workflow model.

An Efficient RDF Query Validation for Access Authorization in Subsumption Inference (포함관계 추론에서 접근 권한에 대한 효율적 RDF 질의 유효성 검증)

  • Kim, Jae-Hoon;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.422-433
    • /
    • 2009
  • As an effort to secure Semantic Web, in this paper, we introduce an RDF access authorization model based on an ontology hierarchy and an RDF triple pattern. In addition, we apply the authorization model to RDF query validation for approved access authorizations. A subscribed SPARQL or RQL query, which has RDF triple patterns, can be denied or granted according to the corresponding access authorizations which have an RDF triple pattern. In order to efficiently perform the query validation process, we first analyze some primary authorization conflict conditions under RDF subsumption inference, and then we introduce an efficient query validation algorithm using the conflict conditions and Dewey graph labeling technique. Through experiments, we also show that the proposed validation algorithm provides a reasonable validation time and when data and authorizations increase it has scalability.

Analyses on the Workflow Critical Path (워크플로우 임계 경로에 관한 분석)

  • Son, Jin-Hyun;Chang, Duk-Ho;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.677-687
    • /
    • 2001
  • The critical path has been widely applied to many areas of computer engineering especially a directed acyclic graph. Its concept can also be useful in the context of a workflow. The workflow critical path is defined as a path which has the longest average execution time from the start activity to the end activity of workflow. Because there can be several concurrently executed workflow instances for a specific workflow a new method to determine the critical path should be developed. In this paper we specify our workflow queuing network model from which we can easily analyze many workflow characteristics. Based on this workflow model. we propose a method to identify the critical path In addition, we show come workflow areas which can utilze the critical path.

  • PDF

Design of Integrated medical sensor node and Mobile Vital Healthcare diagnosis System (통합형 메디컬센서노드와 모바일 환자생체정보 관리 시스템 설계)

  • Lee, Seung-chul;Gwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.302-305
    • /
    • 2009
  • The Multiple vital signs management system using Mobil phone is designed with Wireless sensor network and CDMA which are integrated to create a wide coverage to support various environments like inside and outside of hospital. Health signals from medical sensor node are analysed in cell phone first for real time signal analyses and then the abnormal vital signs are sent and save to hospital server for detail signal processing and doctor's diagnosis. We developed integrated vital access processor of sensor node to use selective medical interface(ECG, Blood pressure and sugar module) and control the self-organizing network of sensor nodes in a wireless sensor network. chronic disease such as heart disease and diabetes is able to check using graph view in mobile phone.

  • PDF

Performance Analysis of Exercise Gesture-Recognition Using Convolutional Block Attention Module (합성 블록 어텐션 모듈을 이용한 운동 동작 인식 성능 분석)

  • Kyeong, Chanuk;Jung, Wooyong;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.155-161
    • /
    • 2021
  • Gesture recognition analytics through a camera in real time have been widely studied in recent years. Since a small number of features from human joints are extracted, low accuracy of classifying models is get in conventional gesture recognition studies. In this paper, CBAM (Convolutional Block Attention Module) with high accuracy for classifying images is proposed as a classification model and algorithm calculating the angle of joints depending on actions is presented to solve the issues. Employing five exercise gestures images from the fitness posture images provided by AI Hub, the images are applied to the classification model. Important 8-joint angles information for classifying the exercise gestures is extracted from the images by using MediaPipe, a graph-based framework provided by Google. Setting the features as input of the classification model, the classification model is learned. From the simulation results, it is confirmed that the exercise gestures are classified with high accuracy in the proposed model.

Implementation of fluid flow measuring and warning alarm system using an WeMos and an fluid flow sensor (WeMos와 유량 센서를 이용한 유속 모니터링 및 경보 알림 시스템 구현)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.139-143
    • /
    • 2019
  • Measurement of flow rate is required in various fields. Water meters are often used at home, and flow meters are used in water and sewage plants, petrochemical industries and so on.. A system is needed to monitor the flow rate in real time and notify immediately when flow rate is abnormal. Recently, with the development of the IoT it is possible to construct such devices at low cost. WeMos can be programmed with Arduino IDE as a mini wifii IoT module. The flow sensor can output a digital pulse proportional to the flow rate. In this paper, we developed the flow monitoring and warning system using WeMos and IoT technology. When the system operates, it calculates the flow rate, sends the value as JSON format to the server, monitors the flow rate as graph from the remote with the smartphone. We also implement the system to promptly send alert message to the smart phone using Pushbullet when the flow rate is abnormal.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

Web based Fault Tolerance 3D Visualization of IoT Sensor Information (웹 기반 IoT 센서 수집 정보의 결함 허용 3D 시각화)

  • Min, Kyoung-Ju;Jin, Byeong-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-152
    • /
    • 2022
  • Information collected from temperature, humidity, inclination, and pressure sensors using Raspberry Pi or Arduino is used in automatic constant temperature and constant humidity systems. In addition, by using it in the agricultural and livestock industry to remotely control the system with only a smartphone, workers in the agricultural and livestock industry can use it conveniently. In general, temperature and humidity are expressed in a line graph, etc., and the change is monitored in real time. The technology to visually express the temperature has recently been used intuitively by using an infrared device to test the fever of Corona 19. In this paper, the information collected from the Raspberry Pi and the DHT11 sensor is used to predict the temperature change in space through intuitive visualization and to make a immediate response. To this end, an algorithm was created to effectively visualize temperature and humidity, and data representation is possible even if some sensors are defective.

Development of Insole for AI-Based Diagnosis of Diabetic Foot Ulcers in IoT Environment (IoT 환경에서 AI 기반의 당뇨발 진단을 위한 깔창 개발)

  • Choi, Won Hoo;Chung, Tai Myoung;Park, Ji Ung;Lee, Seo Hu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.3
    • /
    • pp.83-90
    • /
    • 2022
  • Diabetes is a common disease today, and there are also many cases of developing into serious complications called Diabetic Foot Ulcers(DFU). Diagnosis and prevention of DFU in advance is an important task, and this paper proposes the method. Based on existing studies introduced in the paper, it can be seen that foot pressure and temperature information are deeply correlated with DFU. Introduce the process and architecture of SmarTinsole, an IoT device that measures these indicators. Also, the paper describes the preprocessing process for AI-based diagnosis of DFU. Through the comparison of the measured pressure graph and the actual human step distribution, it presents the results that multiple information collected in real-time from SmarTinsole are more efficient and reliable than the previous study.