• Title/Summary/Keyword: Time domain motion analysis

Search Result 294, Processing Time 0.023 seconds

Aerodynamic Analysis of the Blended Wing Body Type MAV using the Time-Domain Panel Method (시간영역 패널법을 이용한 융합익기 형상 초소형 무인기의 공력해석)

  • Park, Jin-Han;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.637-646
    • /
    • 2010
  • A time-domain panel method based on the potential flow theory and the time-stepping method is developed to predict the steady/unsteady aerodynamic characteristics of FM07, which is the BWB (Blended-wing body) type MAV. In the aerodynamic analyses, we used two types of the initial model(Case I) and the improved model(Case II), which is moved the gravity center toward the rear and has larger aspect ratio. In the steady aerodynamic analyses, it is revealed that improved model has higher lift to drag ratio(L/D) and more stable pitch characteristic than those of the initial model. In the unsteady aerodynamic analyses for sudden acceleration motion similar to the launch phase of MAV, it seemed that there is a rapid increase of the lift coefficient after the launch and unsteady results are good agreed compare with steady results in just a few times. In the analysis for pitch oscillation motion, which is occurred at the cruise condition of the FM07, it shows that unsteady aerodynamic coefficients looped around steady results and the improved model has more sensitive aerodynamic characteristics.

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey;Yavuz Cetin Cuma;Ibrahim Ozgur Deneme;Faruk Firat Calim
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.413-426
    • /
    • 2024
  • This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

Sensitivity Analysis of input shaping filter designed in the Z-domain (Z-영역에서 설계된 입력성형필터의 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Lim, Byoung-Duk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.883-888
    • /
    • 1999
  • To obtain high positioning auccuracy for a long, flex bleman Ipulator, residual vibration must be removed from the tip motion. But it is difficult to control the vibration of low frequency. There are open-loop and closed loop methods in the elimination of the residual vibration. We inroduce input shaping technique has been used as a simple open-loop method of controlling the residual vibration of a flexible manipulator. Design of input shaper in the continuous time domain is complicated. This paper presents a new technique that designs input shaper in the z-domain and analyzes input shaping method in the z-domain. This technique is simple and easy to design input shaper.

  • PDF

Stability and frequency response analysis of multipurpose vehicle using linear vehicle model (다용도 차량의 선형 모델을 이용한 직진 안전성 및 주파수 응답해석)

  • Kim, B.K.;Kim, W.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.124-129
    • /
    • 1997
  • The purpose of this study is to predict the stability and frequency response of multipurpose vehicle. The vehicle model has seven degrees of freedom. The motion equations are derived by using Lagrangian equation and linearized. The positions of eigenvalues of model which are dominated by lateral velocity, yaw rate, roll rate of sprung mass are used to predict the stability of motion. The resonse of sprung mass to steering wheel is simulated in time domain. It is predicted that the roll response of sprung mass would rather be improved by modifying the position of eigenvalues. The responses of sprung mass to steering wheel are also simulated in frequency domain. The magnitude and phase plots of gains are evaluated in driver's steering input frequency range.

  • PDF

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

The effect of in-plane deformations on the nonlinear dynamic response of laminated plates

  • Kazanci, Zafer;Turkmen, Halit S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.589-608
    • /
    • 2012
  • In this study, the effect of in-plane deformations on the dynamic behavior of laminated plates is investigated. For this purpose, the displacement-time and strain-time histories obtained from the large deflection analysis of laminated plates are compared for the cases with and without including in-plane deformations. For the first one, in-plane stiffness and inertia effects are considered when formulating the dynamic response of the laminated composite plate subjected to the blast loading. Then, the problem is solved without considering the in-plane deformations. The geometric nonlinearity effects are taken into account by using the von Karman large deflection theory of thin plates and transverse shear stresses are ignored for both cases. The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solution functions are assumed for the space domain and substituted into the equations of motion. Then, the Galerkin method is used to obtain the nonlinear algebraic differential equations in the time domain. The effects of the magnitude of the blast load, the thickness of the plate and boundary conditions on the in-plane deformations are investigated.

The effect of heaving motion of multiple wave energy converters installed on a floating platform on global performance

  • Dongeun Kim;Yeonbin Lee;Yoon Hyeok Bae
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.349-365
    • /
    • 2023
  • Targeting a floating wave and offshore wind hybrid power generation system (FWWHybrid) designed in the Republic of Korea, this study examines the impact of the interaction, with multiple wave energy converters (WECs) placed on the platform, on platform motion. To investigate how the motion of WECs affects the behavior of the FWWHybrid platform, it was numerically compared with a scenario involving a 'single-body' system, where multiple WECs are constrained to the platform. In the case of FWWHybrid, because the platform and multiple WECs move in response to waves simultaneously as a 'multi-body' system, hydrodynamic interactions between these entities come into play. Additionally, the power take-off (PTO) mechanism between the platform and individual WECs is introduced for power production. First, the hydrostatic/dynamic coefficients required for numerical analysis were calculated in the frequency domain and then used in the time domain analysis. These simulations are performed using the extended HARP/CHARM3D code developed from previous studies. By conducting regular wave simulations, the response amplitude operator (RAO) for the platform of both single-body and multi-body scenarios was derived and subsequently compared. Next, to ascertain the difference in response in the real sea environment, this study also includes an analysis of irregular waves. As the floating body maintains its position through connection to a catenary mooring line, the impact of the slowly varying wave drift load cannot be disregarded. To assess the influence of the 2nd-order wave exciting load, irregular wave simulations were conducted, dividing them into cases where it was not considered and cases where it was included. The analysis of multi-degree-of-freedom behavior confirmed that the action of multiple WECs had a substantial impact on the platform's response.

Numerical Study on Floating-Body Motions in Finite Depth

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2012
  • Installing floating structures in a coastal area requires careful observation of the finite-depth effect. In this paper, a Rankine panel method that includes the finite-depth effect is developed in the time domain. The bottom boundary condition is satisfied by directly distributing Rankine panels on the bottom surface. A stepwise analysis is performed for the radiation diffraction problems and consequently freely-floating motion responses over different water depths. The hydrodynamic properties of two test hulls, a Series 60 and a floating barge, are compared to the results from another computation program for validation purposes. The results for both hulls change remarkably as the water depth becomes shallower. The important features of the results are addressed and the effects of a finite depth are discussed.

Direct integration method for stochastic finite element analysis of nonlinear dynamic response

  • Zhang, S.W.;Ellingwood, B.;Corotis, R.;Zhang, Jun
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.273-287
    • /
    • 1995
  • Stochastic response of systems to random excitation can be estimated by direct integration methods in the time domain such as the stochastic central difference method (SCDM). In this paper, the SCDM is applied to compute the variance and covariance in response of linear and nonlinear structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems with both deterministic and random material properties excited by white noise. For the former case, closed-form solutions can be obtained. Numerical results also are presented for a simply supported geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam is idealized by the stochastic finite element method. A perturbation technique is applied to formulate the equations of motion of the system, and the dynamic structural response statistics are obtained in a time domain analysis. The effect of variations in structural parameters and the numerical stability of the SCDM also are examined.

Study on Ship Motion Analysis of Turret-Moored LNG FSRU Compared with Model Test (터렛 계류 LNG FSRU의 운동 해석 및 모형시험 검토)

  • Jee, Hyun-Woo;Park, Byung-Joon;Jeong, Seung-Gyu;Choi, Young-Dal;Hong, Seok-Won;Sung, Hong-Gun;Cho, Seok-Kyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, hydrodynamic performance of FSRU which is designed to operate in North America East Coast assessed. In order to estimate the dynamic performance, the numerical analysis is carried out based on a time domain simulation program to solve the coupled dynamics for floater and mooring lines which is as well known program as DNV SESAM package. The target operating area is East coast of North America and the model test was carried out based on the meta-ocean data of the area. The mooring analysis is only considered wave without other environment condition at this time. The results of the numerical analysis show the under-estimated results at the higher wave height condition. But the tendency is very similar. Also, the motion response show good agreement compared with model test.

  • PDF