• Title/Summary/Keyword: Time diversity gain

Search Result 152, Processing Time 0.027 seconds

Performance Analysis of STBC Concatenated Convolutional Code for Improvement of Transmission Reliability (STBC의 전송 신뢰성 향상을 위한 컨볼루션 코드 연계 시스템)

  • Shin, Hyun-jun;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.586-589
    • /
    • 2013
  • In this paper, the proposed scheme is STBC system combined with convolutional code to ensure the reliability of data transmission for a high rate wireless communication. In addition, this scheme uses a modified viterbi algorithm in order to get a high system gain when data is transmitted. Because we combine STBC and comvolutional code, the proposed scheme can get a diversity gain of STBC and coding gain of convolutional code at the same time. Unlike existing viterbi docoding algorithm using Hamming distance in order to calculate branch matrix, the modified viterbi algorithm uses Euclidean distance value between received symbol and reference symbol. To analyze the system proposed, it was simulated by changing the constraint length of the convolutional code and the number of transmit and receive antennas of STBC.

  • PDF

Performance Analysis of Frequency Diversity Scheme for OFDM Systems Using Sub-channel Correlation Characteristics (부채별 상관 특성을 이용한 OFDM 시스템의 주파수 다이버시티 기법 성능 분석)

  • 이종식;김장욱;오창헌;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.614-622
    • /
    • 2004
  • In this paper, we propose the frequency diversity scheme for performance improvement of a OFDM system without decreasing the spectral efficiency. In the proposed scheme, information bit is encoded to symbol by a simple procedure, and the encoded symbol is transmitted through the two lowest correlated sub-channels with the particular phase difference. At the receiver, a frequency diversity gain is obtained by a simple signal processing. We also suggest optimum phase difference value to minimize the performance degradation which resulted from a phase difference estimation error and bit/symbol mapping method to minimize BER. As results, at the point of performance improvement, the proposed scheme is excellent even though it requires a little increase of system complexity because of an additional encoding and decoding. In particular, we confirmed through computer simulation that on the same channel environment and bandwidth efficiency, the 27x/1Rx STBC-OFDM system adopting the proposed frequency diversity scheme outperforms the conventional 27x/1Rx STBC-OFDM system performance

The Analysis of Performance for W-CDMA System using Channel Coding & Phse Hopping 4-Tx Space-Time Code over ITU-R realistic channel model. (ITU-R 실측 채널 모델에서 채널 코딩과 Phase Hopping 4-Tx 시공간 부호를 적용한 W-CDMA 시스템의 성능분석)

  • Park Jeong-Hyun;Kim Kwang-jin;Oh Dong-jin;Kim Cheol-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.75-78
    • /
    • 2004
  • In this paper, we analyze the performance of transmitter and receiver of W-CDMA system using the channel coding and space time code in downlink over ITU-R realistic channel model. We can improve the data rate and the reliability of communications by a channel code, and we can get a diversity gain by using the space time code over fading channels. We also apply the RAKE receiver to improve a performance in multi-path fading channel environment.

  • PDF

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

Performance Analysis of Space-Time Block Coded Cooperative Wireless Transmission in Rayleigh Fading Channels

  • Kong Hyung-Yun;Khuong Ho-Van
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.306-312
    • /
    • 2006
  • This paper studies theoretically the bit error rate (BER) performance of cooperative transmission using space-time block code (STBC) in a fully distributed manner. Specifically, we first propose a STBC-based cooperative signaling structure to make the cooperation of three single-antenna terminals possible. Then, we derive the closed-form BER expressions for both cooperation and noncooperation schemes under flat Rayleigh fading channel plus additive white Gaussian noise (AWGN). The validity of these expressions is verified by Monte-Carlo simulations. A variety of numerical and simulation results reveal that the cooperative transmission achieves higher diversity gain and better performance than the direct transmission for the same total transmit power.

Block-Ordered Layered Detector for MIMO-STBC Using Joint Eigen-Beamformers and Ad-Hoc Power Discrimination Scheme

  • Lee Won-Cheol
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2006
  • Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.

Implementation of WLAN Baseband Processor Based on Space-Frequency OFDM Transmit Diversity Scheme (공간-주파수 OFDM 전송 다이버시티 기법 기반 무선 LAN 기저대역 프로세서의 구현)

  • Jung Yunho;Noh Seungpyo;Yoon Hongil;Kim Jaeseok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose an efficient symbol detection algorithm for space-frequency OFDM (SF-OFDM) transmit diversity scheme and present the implementation results of the SF-OFDM WLAN baseband processor with the proposed algorithm. When the number of sub-carriers in SF-OFDM scheme is small, the interference between adjacent sub-carriers may be generated. The proposed algorithm eliminates this interference in a parallel manner and obtains a considerable performance improvement over the conventional detection algorithm. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In the case of 2 transmit and 2 receive antennas, at $BER=10^{-4}$ the proposed algorithm obtains about 3 dB gain over the conventional detection algorithm. The packet error rate (PER), link throughput, and coverage performance of the SF-OFDM WLAN with the proposed detection algorithm are also estimated. For the target throughput at $80\%$ of the peak data rate, the SF-OFDM WLAN achieves the average SNR gain of about 5.95 dB and the average coverage gain of 3.98 meter. The SF-OFDM WLAN baseband processor with the proposed algorithm was designed in a hardware description language and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. With the division-free architecture, the total logic gate count for the processor is 945K. The real-time operation is verified and evaluated using a FPGA test system.

Distributed Alamouti Space Time Block Coding Based On Cooperative Relay System (협동 중계 시스템을 이용한 분산 Alamouti 시공간 블록 부호)

  • Song, Wei;Cho, Kye-Mun;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.16-23
    • /
    • 2009
  • In this paper, we propose a new distributed Alamouti space-time block coding scheme using cooperative relay system composed of one source node, three relay nodes and one destination node. The source node is assumed to be equipped with two antennas which respectively use a 2-beam array to communicate with two nodes selected from the three relay nodes. During the first time slot, the two signals which respectively were transmitted by one antenna at the source, are selected by one relay node, added, amplified, and forwarded to the destination. During the second time slot, the other two relay nodes implement the conjugate and minusconjugate operations to the two received signals, respectively, each in turn is amplified and forwarded to the destination node. This transmission scheme represents a new distributed Alamouti space-time block code that can be constructed at the relay-destination channel. Through an equivalent matrix expression of symbols, we analyze the performance of this proposed space-time block code in terms of the chernoff upper bound pairwise error probability (PEP). In addition, we evaluate the effect of the coefficient $\alpha$ ($0{\leq}{\alpha}{\leq}1$) determined by power allocation between the two antennas at the source on the received signal performance. Through computer simulation, we show that the received signals at the three relays have same variance only when the value of $\alpha$ is equal to $\frac{2}{3}$, as a consequence, a better performance is obtained at the destination. These analysis results show that the proposed scheme outperforms conventional proposed schemes in terms of diversity gain, PEP and the complexity of relay nodes.

A New Cooperative Signal Transmission System Based on CDMA under Rayleigh Fading Channel (레일리 페이딩 환경 하에서 CDMA 기반의 새로운 협력 신호전송 시스템)

  • Choi, Jeong-Ho;Kong, Hyung-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.351-357
    • /
    • 2007
  • In this paper, we propose a new cooperative signaling structure based on CDMA to overcome both 2/3 spectrum efficiency and low diversity gain of conventional cooperative signaling through continuous overlapping of signal that each user wants to transmit. Proposed signal structure can achieve the spectrum efficiency nearly "1" by receiving additional data for next time as well as maximum diversity gain to detect data continuously at both base station and each user. The orthogonality of CDMA's spreading codes can improve performance of optimal detector by reducing inter-user channel environment and distinguishing each user. We perform the computer simulation to verify the proposed system through comparing cooperative mode and non-cooperative mode under Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

3/4-rate SFBC SSB SC FDMA System with 4 Transmit Antennas (4개의 송신 안테나를 갖는 3/4 비율의 주파수 공간 블록 부호 단일 측대 파형 SC FDMA 시스템)

  • Won, HuiChul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • In order to increase frequency transmission efficiency, single side band(SSB) transmission systems with the complex conjugate symmetry characteristics on a frequency domain have been studied. In addition, orthogonal block codes(space-time or space-frequency block code(SFBC)) for the diversity performance gain of transmission systems have been widely researched. In this paper, we implement a 3/4-rate SFBC SSB single-carrier(SC) frequency division multiple access(FDMA) system with 4 transmit antennas. It can be shown from the simulation results that the proposed SFBC SSB SC FDMA system using the 3/4-rate 4×4 orthogonal block code outperforms the conventional SSB SC FDMA system and the 2×2 SFBC SSB SC FDMA system with 2 transmit antennas.