• Title/Summary/Keyword: Time diversity gain

Search Result 152, Processing Time 0.028 seconds

A Golden Coded-Spatial Modulation MIMO System (골든 부호 기반의 공간 변조 다중 안테나 시스템)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, the spatial modulation (SM) multi-input multi-output (MIMO) system is proposed for indoor wireless local area networks (WLANs) with improved spectral efficiency. SM is suitable for high speed WLANs with avoiding the inter channel interference (ICI). Only one transmit antenna is activated in SM at each symbol interval. Therefore, it fails to attain the maximum coding gain of MIMO. The space time block code (STBC)-SM MIMO system can attain the maximum diversity gain at the expense of spectral efficiency. The proposed Golden-SM MIMO system uses the Golden code to improve the coding gain and spectral efficiency at the same time. The Golden code is adapted for STBC-SM and it makes the new code book for transmission symbols. The performance of the proposed system is compared with the conventional systems with computer simulations.

The Combined AMC-MIMO System with Optimal Turbo Coded V-BLAST Technique to Improve Throughput and SNR (전송률 향상 및 SNR 개선을 위한 최적의 터보 부호화된 V-BLAST 기법을 적용한 AMC-MIMO 결합시스템)

  • Ryoo, Sang-Jin;Lee, Kyung-Hwan;Choi, Kwang-Wook;Lee, Keun-Hong;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.61-70
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST(Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP Decoder in decoding Algorithm of V-BLAST: ordering and slicing. And comparing the proposed system with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance and SNR has been improved. In addition, we show that the proposed system using STD(Selection Transmit Diversity) scheme results in on improved result, By using simulation and comparing to conventional Turbo Coded V-BLAST technique with the Adaptive Modulation systems, the optimal Turbo Coded V-BLAST technique with the Adaptive Modulation systems has SNR gain over all SNR range and better throughput gain that is about 350Kbps in 11dB SNR range. Also, comparing with the conventional Turbo Coded V-BLAST technique using 2 transmit and 2 receive antennas, the proposed system with STD scheme show that the improvement of maximum throughput is about 1.77Mbps in the same SNR range and the SNR gain is about 5.88dB to satisfy 4Mbps throughput performance.

  • PDF

The Performance of Multistage Cooperation in Relay Networks

  • Vardhe, Kanchan;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • We analyze the performance of multistage cooperation in decode-and-forward relay networks where the transmission between source and destination takes place in $T{\geq}2$ equal duration and orthogonal time phases with the help of relays. The source transmits only in the first time phase. All relays that can decode the source's transmission forward the source's message to the destination in the second time phase, using a space-time code. During subsequent time phases, the relays that have successfully decoded the source message using information from all previous transmitting relays, transmit the space-time coded symbols for the source's message. The non-decoding relays keep accumulating information and transmit in the later stages when they are able to decode. This process continues for T cooperation phases. We develop and analyze the outage probability of multistage cooperation protocol under orthogonal relaying. Through analytical results, we obtain the near-optimal placement strategy for relays that gives the best performance when compared with most other candidate relay location strategies of interest. For different relay network topologies, we also investigate an interesting tradeoff between an increased SNR and decreased spectral efficiency as the number of cooperation stages is increased. It is also shown that the largest multistage cooperation gain is obtained in the low and moderate SNR regime.

A PN-code Acquisition method Using Array Antenna Systems for CDMA2000 1x (CDMA2000 1x용 배열 안테나 시스템에서 PN 동기 획득 방법)

  • Jo, Hee-Nam;Yun, Yu-Suk;Choi, Seung-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.33-40
    • /
    • 2005
  • This paper presents a structure of the searcher using a diversity in array antenna systems operating in the cdma2000 1x signal environments. The new technique exploits the fact that the In-phase and quadrature components of interferers can respectively be viewed as an independent gaussian noise at each antnna element in most practical cdma signal environments. The proposed PN acquisition scheme is a singles-dwell PN acquisition system consisting of two stages, that is, the searching stage and the verification stage. The searching stage independently correlates the receiver multiple signals with PN generator of each antenna element for obtaining the synchronous energy at the entire region. Then, the searching results of each antenna element are non-coherently combinind. The verification stage compares the searching energy with the optimal threshold, which is predesigned in the lock detector, and decides whether the acquisition is successful or fail. In this paper, we analyzed the effect of tile diversity order to determine the mean acquisition time. In general, it is known that the mean acquisition time significantly decrease as the number of antenna elements increases. But, as the diversity order goes up, the enhancement of the performance is saturated. Therefore, to decrease the mean acquisition time of the searcher, we must design the optimal array antenna systems by considering the operating SNR range of the receiver, the probability of detection $P_D$ and that of false alarm $P_{FA}$ . The Performance of the proposed PN acquisition scheme is analyzed in frequency selective Rayleigh fading channels. In this paper, the effect of the number of antenna elements on PN acquisition scheme is shown according to the probability of detection $P_D$ and that of false alarm $P_{FA}$.

Relay-based Cooperative Communication Technique using Repetitive Transmission on D-STBC (반복 전송을 이용한 D-STBC 중계기 협력 통신 기법)

  • Song, Ki-O;Jung, Yong-Min;Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1122-1127
    • /
    • 2010
  • In this paper, we propose a relay-based DF cooperative communication scheme using repetitive transmission algorithm for wireless LAN environments on D-STBC. Additional transmission diversity gain can be obtained by repetitive transmission algorithm. However, in comparison with conventional schemes, data rate is decreased in half. We consider data modulation constellation twice higher than conventional schemes. Further, system complexity is decreased and performance degradation is minimized because repetitive transmission algorithm is adapted between source and relay node. We show the uncoded BER performance of the proposed algorithm over HiperLAN/2 Rayleigh fading channel.

MIMO ARQ Systems Using Alamouti Coding with Optimal Retransmission Order for Maritime Communications System (해상 통신을 위한 Alamouti 방식의 다중안테나 기반 최적 재전송 순서 기법)

  • Kim, Dong Ho;Li, Weiduo;Lee, Jung-Hoon;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.394-401
    • /
    • 2013
  • Recently there have been much interest in the performance improvement of maritime communication system. In the maritime communication system, the wireless channel is likely to be time-invariant and the retransmission scheme is not proper because it does not provide time diversity. For the improvement of reliability, we consider MIMO ARQ scheme using Alamouti-type signal which can provide space and time diversity. In this paper, we also propose the criterion of optimal retransmission order and provide its performance of error probability and packet throughput. The proposed MIMO ARQ scheme with optimal retransmission order has performance gain over random ordered MIMO ARQ and conventional Chase combining method. Therefore we expect that it can be adapted to the next generation maritime communication system.

Cooperative Analog and Digital (CANDI) Time Synchronization for Large Multihop Network (다중 홉 네트워크를 위한 디지털 및 아날로그 협동 전송 시간 동기화 프로토콜)

  • Cho, Sung-Hwan;Ingram, Mary Ann
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1084-1093
    • /
    • 2012
  • For large multihop networks, large time synchronization (TS) errors can accumulate with conventional methods, such as TPSN, RBS, and FTSP, since they need a large number of hops to cover the network. In this paper, a method combining Concurrent Cooperative Transmission (CCT) and Semi- Cooperative Spectrum Fusion (SCSF) is proposed to reduce the number of hops to cover the large network. In CCT, cooperating nodes transmit the same digitally encoded message in orthogonal channels simultaneously, so receivers can benefit from array and diversity gains. SCSF is an analog cooperative transmission method where different cooperators transmit correlated information simultaneously. The two methods are combined to create a new distributed method of network TS, called the Cooperative Analog and Digital (CANDI) TS protocol, which promises significantly lower network TS errors in multi-hop networks. CANDI and TPSN are compared in simulation for a line network.

Antenna Selection and Shuffling for DSTTD Systems with Correlated Transmit-Antenna (송신 안테나 사이에 상관관계가 있는 DSTTD 시스템에서 안테나 선택과 뒤섞는 기법)

  • Joung, Jin-Gon;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.767-774
    • /
    • 2007
  • A new transmit antenna selection and shuffling($AS^2$) method for spatially correlated double space time transmit diversity(DSTTD) systems is proposed. The proposed method allows dumb antennas and the superposition of multiple signals at the same transmit antenna, whereas the conventional methods consider the antenna shuffling(AS) only. According to the simulation result, the proposed method provides a 1.8 dB signal-to-noise ratio(SNR) gain over the conventional methods for spatially correlated transmit antennas. Although the number of candidates for $AS^2$ is much higher than that of AS, it is found that the number of candidates for $AS^2$ can be reduced to 36 by using the characteristics and properties of preprocessing matrices, and among them, only 6 candidates are almost always chosen. Next, we empirically compare the bit-error-rate (BER) performance of the proposed method with the conventional spatial multiplexing(SM) technique with antenna selection. Simulation results show that the proposed method outperforms the SM technique.

Mitigation of Inter-Symbol Interference in Underwater Acoustic Communication Using Spatial Filter (공간 필터를 이용한 수중음향통신의 인접 심볼 간 간섭 완화)

  • Eom, Min-Jeong;Park, Ji-Sung;Ji, Yoon-Hee;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 2014
  • The underwater acoustic communication (UAC) is characterized by doubly spread channel. It is included in the time-variant doppler shift and delay-time spreads due to multiple paths. To compensate such distorted signals, various techniques including time-reversal processing, spatial diversity, phase estimator, and equalizer are being applied. In this paper, a spatial filter based on the beamforming is proposed as a method to mitigate such inter-symbol interferences that are generated in time-varying multipath channels. The proposed technique realizes coherent communications by steering the direction of the desired signals and improves the performance of UAC by increasing the signal-to-interference plus noise ratio using the array gain.

BICM Applied to Expanded OSTBC (확장된 OSTBC에 적용된 BICM)

  • Kim, Chang-Joong;Park, Jonng-Chul;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.64-69
    • /
    • 2009
  • Bit-interleaved coded modulation(BICM) applied to Alamouti's orthogonal space-time block code(OSIBC) has a rate loss problem In this paper, we expand orthogonal space-time block code(OSTBC) and apply bit-interleaved coded modulation (BICM) to expanded OSTBC(XOSIBC) to obtain a diversity gain without a rate loss. Binary phase shift keying(BPSK) design example is presented. Simulation results are also provided.