• Title/Summary/Keyword: Time dependent density functional theory

Search Result 25, Processing Time 0.04 seconds

Fluorescence Spectroscopic and Time-Dependent Density-Functional Theory Studies of Diphenylsilane

  • Boo, Bong-Hyun;Lee, Jae-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.993-996
    • /
    • 2012
  • We investigated fluorescence and fluorescence excitation of diphenylsilane (DPS) in a solution and molecular beams in combination with the aid of the DFT method. When the molecule was photoexcited at 250 nm in a cyclohexane solution, normal and excimer fluorescences were observed in the ranges of 260-320 and 330-450 nm, respectively. The fluorescence excitation spectrum indicates that the channel leading to the intramolecular excimer formation is not efficient in comparison with the normal fluorescence. Vibrationally resolved fluorescence excitation spectra were measured for the DPS molecules cooled in pulsed supersonic expansion of He in the range 262.2-271.7 nm, in which we can see several electronic excitation spectra exhibiting the electronic band origins. We found that the simulated absorption spectrum based on the time-dependent densityfunctional theory calculations accords well with the absorption spectrum.

Time-Dependent Density Functional Theory Study on Cyclopentadithiophene-Benzothiadiazole-Based Push-Pull-Type Copolymers for New Design of Donor Materials in Bulk Heterojunction Organic Solar Cells

  • Ku, Ja-Min;Kim, Dae-Kyun;Ryu, Taek-Hee;Jung, Eun-Hwan;Lansac, Yves;Jang, Yun-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1029-1036
    • /
    • 2012
  • Push-pull-type copolymers - low-band-gap copolymers of electron-rich fused-ring units (such as cyclopentadithiophene; CPDT) and electron-deficient units (such as benzothiadiazole; BT) - are promising donor materials for organic solar cells. Following a design principles proposed in our previous study, we investigate the electronic structure of a series of new CPDTBT derivatives with various electron-withdrawing groups using the time-dependent density functional theory and predict their power conversion efficiency from a newlydeveloped protocol using the Scharber diagram. Significantly improved efficiencies are expected for derivatives with carbonyl [C=O], carbonothioyl [C=S], dicyano [$C(CN)_2$] and dicyanomethylene [C=$C(CN)_2$] groups, but these polymers with no long alkyl side chain attached to them are likely to be insoluble in most organic solvents and inapplicable to low-cost solution processes. We thus devise several approaches to attach alkyl side chains to these polymers while keeping their high efficiencies.

Influence of Exchange-Correlation Functional in the Calculations of Vertical Excitation Energies of Halogenated Copper Phthalocyanines using Time-Dependent Density Functional Theory (TD-DFT)

  • Lee, Sang Uck
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2276-2280
    • /
    • 2013
  • The accurate prediction of vertical excitation energies is very important for the development of new materials in the dye and pigment industry. A time-dependent density functional theory (TD-DFT) approach coupled with 22 different exchange-correlation functionals was used for the prediction of vertical excitation energies in the halogenated copper phthalocyanine molecules in order to find the most appropriate functional and to determine the accuracy of the prediction of the absorption wavelength and observed spectral shifts. Among the tested functional, B3LYP functional provides much more accurate vertical excitation energies and UV-vis spectra. Our results clearly provide a benchmark calibration of the TD-DFT method for phthalocyanine based dyes and pigments used in industry.

A Comparison of the Density Functional Theory Based Methodologies for the Triplet Excited State of 𝛑-Conjugated Molecules: Time-Dependent DFT (TD-DFT), TD-DFT within Tamm-Dancoff Approximation (TDA-DFT), and Spin-Unrestricted DFT (UDFT) (𝛑-공액계 분자의 삼중항 여기 상태에 대한 Density Functional Theory (DFT)에 기반한 계산 방법들의 비교: 시간-의존 DFT (TD-DFT), Tamm-Dancoff 근사법을 적용한 DFT (TDA-DFT), 스핀-비제한 DFT (UDFT))

  • Ahn, Chang Hwan;Kim, Dongwook
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.73-77
    • /
    • 2019
  • We compared methodologies based on the density functional theory (DFT), e.g., time-dependent DFT (TD-DFT), TD-DFT within Tamm-Dancoff approximation (TDA-DFT), and spin-unrestricted DFT (UDFT), that are usually employed to optimize the geometries of ${\pi}$-conjugated molecules in their lowest lying triplet excited ($T_1$) state. As a model system for ${\pi}$-conjugated molecules, we employed 1,2,3,4,5-pentacyano-6-phenyl-benzene. In conjunction with 6-31G(d) basis sets, we made use of gap-tuned range-separated ${\omega}B97X$ functional which is often employed recently in the calculations of molecular excited states. Near the equilibrium geometries, we found that the important difference between the geometries derived at UDFT level and those at TD-DFT or TDA-DFT methods: more stable ground-state energies but higher triplet excitation energies for UDFT derived geometries. In the studies, we discuss such differences in more detail.

Theoretical Studies on Electronic Structure and Absorption Spectrum of Prototypical Technetium-Diphosphonate Complex 99mTc-MDP

  • Qiu, Ling;Lin, Jian-Guo;Gong, Xue-Dong;Ju, Xue-Hai;Luo, Shi-Neng
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2358-2368
    • /
    • 2011
  • Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, employing the B3LYP method and the LANL2DZ, 6-31G$^*$(LANL2DZ for Tc), 6-31G$^*$(cc-pVDZ-pp for Tc) and DGDZVP basis sets, have been performed to investigate the electronic structures and absorption spectra of the technetium-99m-labeled methylenediphosphonate ($^{99m}Tc$-MDP) complex of the simplest diphosphonate ligand. The bonding situations and natural bond orbital compositions were studied by the Mulliken population analysis (MPA) and natural bond orbital (NBO) analysis. The results indicate that the ${\sigma}$ and ${\pi}$ contributions to the Tc-O bonds are strongly polarized towards the oxygen atoms and the ionic contribution to the Tc-O bonding is larger than the covalent contribution. The electronic transitions investigated by TDDFT calculations and molecular orbital analyses show that the origin of all absorption bands is ascribed to the ligand-to-metal charge transfer (LMCT) character. The solvent effect on the electronic structures and absorption spectra has also been studied by performing DFT and TDDFT calculations at the B3LYP/6-31G$^*$(cc-pVDZ-pp for Tc) level with the integral equation formalism polarized continuum model (IEFPCM) in different media. It is found that the absorption spectra display blue shift in different extents with the increase of solvent polarity.

Density Functional Theory Study on D-π-A-type Organic Dyes Containing Different Electron-Donors for Dye-Sensitized Solar Cells

  • Song, Jing;Xu, Jie
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3211-3217
    • /
    • 2013
  • Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of three D-${\pi}$-A-type organic dyes (C1-1, D5 and TH208) containing identical ${\pi}$-spacers and electron acceptors, but different aromatic amine electron-donating groups (tetrahydroquinoline, triphenylamine and phenothiazine). The coplanar geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating ability of tetrahydroquinoline is stronger than those of triphenylamine and phenothiazine. The computed orbital energy levels of these dyes confirm that the electrons could be injected from the excited dyes to the semiconductor conduction band and the oxidized dyes could be reduced effectively by electrolyte. The TD-DFT results show that the CAM-B3LYP/6-31+G(d, p) is suitable for calculating the absorption spectra. The first absorption band for these dyes is assigned to the HOMO${\rightarrow}$LUMO and HOMO-1${\rightarrow}$LUMO transitions.

Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties

  • Xu, Jie;Wang, Lei;Liang, Guijie;Bai, Zikui;Wang, Luoxin;Xu, Weilin;Shen, Xiaolin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2531-2536
    • /
    • 2010
  • Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been employed to investigate the molecular structures and absorption spectra of two dyes containing diphenylaniline and 4-diphenylamino-diphenylaniline as donor moiety (TPA1 and TPA3). The geometries indicate that the strong conjugation is formed in the dyes. The electronic structures suggest that the intramolecular charge transfer from the donor to the acceptor occurs, and the electron-donating capability of 4-diphenylamino-diphenylaniline is stronger than that of diphenylaniline. The computed highest occupied molecular orbital (HOMO) energy levels are -5.31 and -4.90 eV, while the lowest unoccupied molecular orbital (LUMO) energies are -2.29 and -2.26 eV for TPA1 and TPA3, respectively, revealing that the interfacial charge transfer between the dyes and the semiconductor electrode are electron injection processes from the photon-excited dyes to the semiconductor conduction band. Furthermore, all the experimental absorption bands of TPA1 and TPA3 have been assigned according to the TDDFT calculations.

Effects of Amino Substitution on the Excited State Hydrogen Transfer in Phenol: A TDDFT Study

  • Kim, Sang-Su;Kim, Min-Ho;Kang, Hyuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1481-1484
    • /
    • 2009
  • When isolated phenol or a small phenol-solvent cluster is excited to the $S_1\;state\;of\;{\pi}{\pi}^*$ character, the hydrogen atom of the hydroxyl group dissociates via a ${\pi}{\sigma}^*$ state that is repulsive along the O-H bond. We computationally investigated the substitution effects of an amino group on the excited state hydrogen transfer reaction of phenol. The time-dependent density functional theory (TDDFT) with B3LYP functional was employed to calculate the potential energy profiles of the ${\pi}{\pi}^*$ and the ${\pi}{\sigma}^*$ excited states along the O-H coordinate, together with the orbital shape at each point, as the position of the substituent was varied. It was found that the amino substitution has an effect of lowering the ${\pi}{\sigma}^*$ state and enhancing the excited state hydrogen transfer reaction.

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates (유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구)

  • Seo, Hyun-il;Jeong, Hyeon Jin;Yoon, Byung Jin;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.3
    • /
    • pp.151-159
    • /
    • 2019
  • The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

Highly Efficient and Stable Organic Photo-Sensitizers based on Triphenylamine with Multi-anchoring Chromophore for Dye-sensitized Solar Cells (트리페닐아민을 이용한 염료감응형 태양전지 고효율 염료합성)

  • Yang, Hyunsik;Jung, Daeyoung;Jung, Miran;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.1-88.1
    • /
    • 2010
  • Organic dyes, because of their many advantages, such as high molar extinction coefficients, convenience of customized molecular design for desired photophysical and photochemical properties, inexpensiveness with no transition metals contained, and environment-friendliness, are suitable as photosensitizers for the Dye-sensitized Solar Cell (DSSC). The efficiency of DSSC based on metal-free organic dyes is known to be much lower than that of Ru dyes generally, but a high solar energy-to-electricity conversion efficiency of up to 8% in full sunlight has been achieved by Ito et al. using an indoline dye. This result suggests that smartly designed and synthesized metal-free organic dyes are also highly competitive candidates for photosensitizers of DSSCs with their advantages mentioned above. Recently, the performance of DSSC based on metal-free organic dyes has been remarkably improved by several groups. We had reported the novel organic dye with double electron acceptor chromophore, which was a new strategy to design an efficient photosensitizer for DSSC. To verify the strategy, we synthesized organic dyes whose geometries, electronic structures and optical properties were derived from preceding density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In this paper, we successfully synthesized the chromophore containing multi-acceptor push-pull system from triphenylamine with thiophene moieties as a bridge unit. Organic dyes with a single electron acceptor and double acceptor system were also synthesized for comparison purposes. The photovoltaic performances of these dyes were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were also measured in order to characterize the effects of the multi-anchoring groups on the open-circuit voltage and the short-circuit current. In order to match specifications required for practical applications to be implemented outdoors, light soaking and thermal stability tests of these DSSCs, performed under $100mWcm^{-2}$ and $60^{\circ}C$ for 1000h.

  • PDF