Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.7.2358

Theoretical Studies on Electronic Structure and Absorption Spectrum of Prototypical Technetium-Diphosphonate Complex 99mTc-MDP  

Qiu, Ling (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Lin, Jian-Guo (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Gong, Xue-Dong (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology)
Ju, Xue-Hai (Institute for Computation in Molecular and Material Science, School of Chemical Engineering, Nanjing University of Science and Technology)
Luo, Shi-Neng (Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine)
Publication Information
Abstract
Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations, employing the B3LYP method and the LANL2DZ, 6-31G$^*$(LANL2DZ for Tc), 6-31G$^*$(cc-pVDZ-pp for Tc) and DGDZVP basis sets, have been performed to investigate the electronic structures and absorption spectra of the technetium-99m-labeled methylenediphosphonate ($^{99m}Tc$-MDP) complex of the simplest diphosphonate ligand. The bonding situations and natural bond orbital compositions were studied by the Mulliken population analysis (MPA) and natural bond orbital (NBO) analysis. The results indicate that the ${\sigma}$ and ${\pi}$ contributions to the Tc-O bonds are strongly polarized towards the oxygen atoms and the ionic contribution to the Tc-O bonding is larger than the covalent contribution. The electronic transitions investigated by TDDFT calculations and molecular orbital analyses show that the origin of all absorption bands is ascribed to the ligand-to-metal charge transfer (LMCT) character. The solvent effect on the electronic structures and absorption spectra has also been studied by performing DFT and TDDFT calculations at the B3LYP/6-31G$^*$(cc-pVDZ-pp for Tc) level with the integral equation formalism polarized continuum model (IEFPCM) in different media. It is found that the absorption spectra display blue shift in different extents with the increase of solvent polarity.
Keywords
Technetium-diphosphonate complex; Density functional theory (DFT); Time-dependent density functional theory (TDDFT); Electronic structure; Absorption spectrum;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.   DOI
2 GaussView, release 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
3 Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.   DOI   ScienceOn
4 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02. Wallingford CT: Gaussian, Inc., 2004.
5 Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.   DOI
6 Schaffer, C. E. Inorg. Chim. Acta 2000, 300-302, 1035.   DOI   ScienceOn
7 Pauling, L. C. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p 172.
8 Asikoglu, M.; Durak, F. G. Appl. Radiat. Isotopes. 2009, 67, 1616.   DOI   ScienceOn
9 Guo, X. H.; Luo, S. N.; Wang, H. Y.; Zhou, L.; Xie, M. H.; Ye, W. Z.; Yang, M.; Wang, Y. Nucl. Sci. Tech. 2006, 17, 285.   DOI   ScienceOn
10 Yan, X. H.; Luo, S. N.; Niu, G. S.; Ye, W. Z.; Yang, M.; Wang, H. Y.; Xia,Y. M. Nucl. Sci. Tech. 2008, 19, 165.   DOI   ScienceOn
11 Chen, C. Q.; Luo, S. N.; Lin, J. G.; Yang, M.; Ye, W. Z.; Qiu, L.; Sang, G. M.; Xia, Y. M. Nucl. Sci.Tech. 2009, 20, 302.
12 Lin, J. G.; Luo, S. N.; Chen, C. Q.; Qiu, L.; Wang, Y.; Cheng, W.; Ye, W. Z.; Xia, Y. M. Appl. Radiat. Isotopes 2010, 68, 1616.   DOI   ScienceOn
13 Libson, K.; Deutsch, E.; Barnett, B. L. J. Am. Chem. Soc. 1980, 102, 2476.   DOI
14 Martin, J. L., Jr.; Yuan, J.; Lunte, C. E.; Elder, R. C.; Heineman, W. R.; Deutsch, E. Inorg. Chem. 1989, 28, 2899.   DOI
15 Elder, R. C.; Yuan, J.; Helmer, B.; Pipes, D.; Deutsch, K.; Deutsch, E. Inorg. Chem. 1997, 36, 3055.   DOI   ScienceOn
16 Qiu, L.; Lin, J. G.; Ju, X. H.; Gong, X. D.; Luo, S. N. Chin. J. Chem. Phys. 2011, in press.
17 Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000.
18 Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.   DOI
19 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
20 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
21 Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.   DOI
22 Rard, J. A., Rand, M. N., Anderegg, G., Wanner, H., Eds.; In Chemical Thermodynamics 3. Chemical Thermodynamics of Technetium; Elsevier Science: Lausanne, 1999; p 568.
23 Mendez-Rojas, M. A.; Kharisov, B. I.; Tsivadze, A. Y. J. Coord. Chem. 2006, 59, 1.   DOI   ScienceOn
24 Alberto, R. In Technetium. Comprehensive Coordination Chemistry- II; Cleverty, J. M., Meer, T. S., Eds.; Elsevier Science: Amsterdam, 2003; Vol. 4.
25 Dilworth, J. R.; Parrott, S. J. Chem. Soc. Rev. 1998, 27, 43.   DOI   ScienceOn
26 Kodina, G. E. In Isotopes. Properties, Obtaining, Applications; Baranov, V. Y., Ed.; Atomnaya Energiya: Moscow, 2000.
27 Jurisson, S. S.; Lydon, J. D. Chem. Rev. 1999, 99, 2205.   DOI   ScienceOn
28 Pauwels, E. K.; Stokkel, M. P. Q. J. Nucl. Med. 2001, 45, 18.
29 Mark, D.; Bartholom, A.; Louie, S.; John, F. V.; Jon, Z. Chem. Rev. 2010, 110, 2903.   DOI   ScienceOn
30 Subramanian, G.; McAfee, J. G.; Blair, R. J.; Kallfelz, F. A.; Thomas, F. D. J. Nucl. Med. 1975, 16, 744.
31 Bevan, J. A.; Tofe, A. J.; Benedict, J. J.; Francis, M. D.; Barnett, B. L. J. Nucl. Med. 1980, 21, 961.
32 Laznicek, M.; Laznickova, A.; Budsky, F. Nucl. Med. Commun. 1996, 17, 1016.   DOI
33 Fueger, B. J.; Mitterhauser, M.; Wadsak, W.; Ofluoglu, S.; Traub, T.; Karanikas, G.; Dudczak, R.; Pirich, C. Nucl. Med. Commun. 2004, 25, 361.   DOI   ScienceOn
34 El-Mabhouh, A. A.; Angelov, C. A.; Cavell, R.; Mercer, J. R. Nucl. Med. Biol. 2006, 33, 715.   DOI   ScienceOn
35 Palma, E.; Oliveira, B. L.; Correia, J. D.; Gano, L.; Maria, L.; Santos, I. C.;Santos, I. J. Biol. Inorg. Chem. 2007, 12, 667.   DOI
36 Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.   DOI
37 Desmet, G., Myttenaere, C., Eds.; In Technetium in the Environment; Kluwer Academic Press: Dordrecht, 1986; p 420.
38 Kamlet, M. J.; Taft, R. W. J. Am. Chem. Soc. 1976, 98, 377.   DOI
39 Uchtman, V. A,; Gloss, R. A. J. Phys. Chem. 1972, 76, 1298.   DOI
40 Rasanen, J. P.; Pohjala, E.; Nikander, H.; Pakkanen, T. A. J. Phys. Chem. A 1997, 101, 5196.   DOI   ScienceOn
41 Wiberg, K. A. Tetrahedron 1968, 24, 1083.   DOI   ScienceOn
42 Neuhaus, A.; Veldkamp, A.; Frenking, G. Inorg. Chem. 1994, 33, 5278.   DOI
43 Zhang, T. T.; Jia, J. F.; Wu, H. S. J. Phys. Chem. A 2010, 114, 12251.   DOI   ScienceOn
44 Machura, B.; Jaworska, M.; Lodowski, P. J. Mol. Struc.-Theochem. 2006, 766, 1.   DOI   ScienceOn
45 Gancheff, J. S.; Albuquerque, R. Q.; Guerrero-Martínez, A.; Pape, T.; De Cola, L.; Hahn, F. E. Eur. J. Inorg. Chem. 2009, 4043.
46 Soloman, E. I., Lever, A. B. P., Eds.; Inorganic and Electronic Spectroscopy, Volume II, Applications and Case Studies; Wiley and Sons Inc.: New York, 1999.
47 Fraser, M. G.; Blackman, A. G.; Irwin, G. I. S.; Easton, C. P.; Gordon, K. C. Inorg. Chem. 2010, 49, 5180.   DOI   ScienceOn
48 Yoshihide, N.; Ken, S.; Shigeyoshi, S. Int. J. Quantum Chem. 2009, 109, 2319.   DOI   ScienceOn
49 Machura, B.; Kusz, J.; Tabak, D.; Kruszynski, R. Polyhedron. 2009, 28, 493.   DOI   ScienceOn
50 Liu, C. G.; Su, Z. M.; Guan, W.; Yan, L. K. Inorg. Chem. 2009, 48, 541.   DOI   ScienceOn
51 Rodriuez, L.; Ferrer, M.; Rossell, O.; Duarte, F. J. S.; Santos, A. G.; Lima, J. C. J. Photochem. Photobiol. A: Chem. 2009, 204, 174.   DOI   ScienceOn
52 Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.   DOI
53 Peterson, K. A.; Figgen, D.; Dolg, M.; Stoll, H. J. Chem. Phys. 2007, 126, 124101.   DOI   ScienceOn
54 Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560.   DOI
55 Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.   DOI