Browse > Article
http://dx.doi.org/10.5012/jkcs.2019.63.2.73

A Comparison of the Density Functional Theory Based Methodologies for the Triplet Excited State of 𝛑-Conjugated Molecules: Time-Dependent DFT (TD-DFT), TD-DFT within Tamm-Dancoff Approximation (TDA-DFT), and Spin-Unrestricted DFT (UDFT)  

Ahn, Chang Hwan (Department of Chemistry, Kyonggi University)
Kim, Dongwook (Department of Chemistry, Kyonggi University)
Publication Information
Abstract
We compared methodologies based on the density functional theory (DFT), e.g., time-dependent DFT (TD-DFT), TD-DFT within Tamm-Dancoff approximation (TDA-DFT), and spin-unrestricted DFT (UDFT), that are usually employed to optimize the geometries of ${\pi}$-conjugated molecules in their lowest lying triplet excited ($T_1$) state. As a model system for ${\pi}$-conjugated molecules, we employed 1,2,3,4,5-pentacyano-6-phenyl-benzene. In conjunction with 6-31G(d) basis sets, we made use of gap-tuned range-separated ${\omega}B97X$ functional which is often employed recently in the calculations of molecular excited states. Near the equilibrium geometries, we found that the important difference between the geometries derived at UDFT level and those at TD-DFT or TDA-DFT methods: more stable ground-state energies but higher triplet excitation energies for UDFT derived geometries. In the studies, we discuss such differences in more detail.
Keywords
${\pi}$-Conjugated molecule; Triplet excited state; DFT calculations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926.   DOI
2 Bredas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.   DOI
3 Marian, C. M. WIREs Comput. Mol. Sci. 2012, 2, 187.   DOI
4 Beljonne, D.; Shuai, Z.; Pourtois, G.; Bredas, J.-L. J. Phys. Chem. A 2001, 105, 3899.   DOI
5 Kim, D. Bull. Korean Chem. Soc. 2017, 38, 899.   DOI
6 Kim, D.; Bredas, J.-L. J. Am. Chem. Soc. 2009, 131, 11371.   DOI
7 Kim, D.; Salman, S.; Coropceanu, V.; Salomon, E.; Padmaperuma, A. B.; Sapochak, L. S.; Kahn, A.; Bredas, J.-L. Chem. Mater. 2010, 22, 247.   DOI
8 Salman, S.; Kim, D.; Coropceanu, V.; Bredas, J. L. Chem. Mater. 2011, 23, 5223.   DOI
9 Kim, D.; Coropceanu, V.; Bredas, J. L. J. Am. Chem. Soc. 2011, 133, 17895.   DOI
10 Sun, H.; Zhong, C.; Bredas, J.-L. J. Chem. Theory Comput. 2015, 11, 3851.   DOI
11 Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Abdi Jalebi, M.; Friend, R. H.; Linnolahti, M.; et al. Science 2017, 356, 159.   DOI
12 Foller, J.; Marian, C. M. J. Phys. Chem. Lett. 2017, 8, 5643.   DOI
13 Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.   DOI
14 Penfold, T. J. J. Phys. Chem. C 2015, 119, 13535.   DOI
15 Samanta, P. K.; Kim, D.; Coropceanu, V.; Bredas, J.-L. J. Am. Chem. Soc. 2017, 139, 4042.   DOI
16 Martin, R. L. J. Chem. Phys. 2003, 118, 4775.   DOI
17 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision D.01. Gaussian, Inc.: Wallingford, CT, USA 2009.
18 Lee, K.; Kim, D. J. Phys. Chem. C 2016, 120, 28330.   DOI