• Title/Summary/Keyword: Time control

Search Result 29,584, Processing Time 0.051 seconds

The Self-tuning PID Control Based on Real-time Adaptive Learning Evolutionary Algorithm (실시간 적응 학습 진화 알고리듬을 이용한 자기 동조 PID 제어)

  • Chang, Sung-Ouk;Lee, Jin-Kul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1463-1468
    • /
    • 2003
  • This paper presented the real-time self-tuning learning control based on evolutionary computation, which proves its superiority in finding of the optimal solution at the off-line learning method. The individuals of the populations are reduced in order to learn the evolutionary strategy in real-time, and new method that guarantee the convergence of evolutionary mutations is proposed. It is possible to control the control object slightly varied as time changes. As the state value of the control object is generated, evolutionary strategy is applied each sampling time because the learning process of an estimation, selection, mutation is done in real-time. These algorithms can be applied; the people who do not have knowledge about the technical tuning of dynamic systems could design the controller or problems in which the characteristics of the system dynamics are slightly varied as time changes.

Foundation Differential Settlement Included Time-dependent Elevation Control for Super Tall Structures

  • Zhao, Xin;Liu, Shehong
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Due to the time-dependent properties of materials, structures, and loads, accurate time-dependent effects analysis and precise construction controls are very significant for rational analysis and design and saving project cost. Elevation control is an important part of the time-dependent construction control in supertall structures. Since supertall structures have numerous floors, heavy loads, long construction times, demanding processes, and are typically located in the soft coastal soil areas, both the time-dependent features of superstructure and settlement are very obvious. By using the time-dependent coupling effect analysis method, this paper compares Shanghai Tower's vertical deformation calculation and elevation control scheme, considering foundation differential settlement. The results show that the foundation differential settlement cannot be ignored in vertical deformation calculations and elevation control for supertall structures. The impact of foundation differential settlement for elevation compensation and pre-adjustment length can be divided into direct and indirect effects. Meanwhile, in the engineering practice of elevation control for supertall structures, it is recommended to adopt the multi-level elevation control method with relative elevation control and design elevation control, without considering the overall settlement in the construction process.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

APPLICATION OF BACKWARD DIFFERENTIATION FORMULA TO SPATIAL REACTOR KINETICS CALCULATION WITH ADAPTIVE TIME STEP CONTROL

  • Shim, Cheon-Bo;Jung, Yeon-Sang;Yoon, Joo-Il;Joo, Han-Gyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.531-546
    • /
    • 2011
  • The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation is used for an efficient implementation of the BDF method that does not require excessive memory to store old information from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution fidelity.

Consideration of variable structure controller for robust control and its application to robot manipulator (강인한 제어를 위한 가볍 구조 제어기의 고찰 및 로봇 매니퓰레이터의 적용)

  • 남경태;박정일;이석규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.771-774
    • /
    • 1996
  • This paper presents a continuous time varying sliding surface that allows faster tracking and really guarantees robust contro land smooths control inputs. And this method is evaluated by applying to robot manipulator.

  • PDF

A Study of Time Optimal Control for Nonlinear Sampled-data Contral Systems (비선형이산치계의 최적시간제어에 관한 연구)

  • Hee young Chun
    • 전기의세계
    • /
    • v.26 no.2
    • /
    • pp.84-88
    • /
    • 1977
  • In this paper we apply the maximum principle to design of time optimal nonlinear sampled-data control systems. We introduce the general design procedures and the mathematical formalas for time optimal processes and trajectories. Then we show the application of the technique to determine the optimal control signal, control sequence, switching time and sampling period to the given 4th order process.

  • PDF

Suboptimal control strategy in structural control implementation

  • Xu, J.Y.;Li, Q.S.;Li, G.Q.;Wu, J.R.;Tang, J.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.107-121
    • /
    • 2005
  • The suboptimal control rule is introduced in structural control implementation as an alternative over the optimal control because the optimal control may require large amount of processing time when applied to complex structural control problems. It is well known that any time delay in structural control implementation will cause un-synchronized application of the control forces, which not only reduce the effectiveness of an active control system, but also cause instability of the control system. The effect of time delay on the displacement and acceleration responses of building structures is studied when the suboptimal control rule is adopted. Two examples are given to show the effectiveness of the suboptimal control rule. It is shown through the examples that the present method is easy in implementation and high in efficiency and it can significantly reduce the time delay in structural control implementation without significant loss of performance.

Constant-level luffing and time optimal control of a JIB crane (JIB크레인의 Constant-level luffing과 시간최적제어)

  • 최경배;홍금식;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1788-1791
    • /
    • 1997
  • In this paper constant-level luffing and time optimal control of a JIB crane is investigated. The crane is assumed to have only the derricking motion. the analysis of plance kinematics provides the relationship between the boom angle and the main hosit motor angle for constant-level luffing. The dynamic equations for the crane are very nonlimear, and therefore they are linearized for the application of the linear control theory. The time optimal control in the perspective of no-sway at the end of boom stroke is investigated.

  • PDF

Teleoperator Control Systems with Short Time Delay (시간 지연을 포함한 원격제어 시스템)

  • 장진규;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper has been demonstrated to be essential to successful telemanipulator control when the communication delay between master arms in the operator control station and telemanipulators in the remote site. This paper includes the human dynamics to generate a control command, the monitoring force feedback in order to robust under short time delays and the controller not to requre the derivative of interaction forces. Simulation results suggest that, the proposed control system should be superior to conventional systems in terms of performance and robustness under short time delays.

  • PDF

Analysis of the Position Control Performance under the Time Delay in the Controller Area Network (CAN 시간지연에 대한 아라고 진자의 위치제어 성능분석)

  • Park, Tae-Dong;Lee, Jae-Ho;Youn, Su-Jin;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.354-356
    • /
    • 2006
  • In this paper, the position control performance of networked control systems is analyzed when time delay through the network is considered. Integrating a control system into a network has great advantages over the traditional control system which uses point to point connection: it allows remarkable reduction in wiring, makes it easy to install and maintain the system, and improves compability. However, a networked control system has the critical defect that network uncertainties, such as time delay, can degrade the control system's performance. Therefore, the major concern of a networked control system is analyzing the effect of network uncertainties. This paper is concerned with PID controller performance for stability region, critical stability region and unstability region under the time delay in the Controller Area Network.

  • PDF