• Title/Summary/Keyword: Time Synchronization Error

Search Result 170, Processing Time 0.024 seconds

A Robust OFDMA Channel Estimation Against Imperfect Synchronization (불완전 동기 환경에 강인한 OFDMA 채널 추정기법)

  • Chae Soo-Jin;Kim Eun-Ju;Kim Nak-Myeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.649-655
    • /
    • 2005
  • We propose a robust channel estimation method against imperfect synchronization in orthogonal frequency division multiple access (OFDMA) downlink systems. We address time and frequency synchronization, and the channel estimation at the same time, and try to minimize the error propagation from the time and frequency synchronization steps into the chailnel estimation. The simulation results show that the proposed channel estimation method outperforms the conventional algorithms by about 3dB, and circumvents the problem of mismatch among the synchronization tasks.

Phase Offset Enumeration Method with Error Detection and Its Application to Synchronization of PN Sequences

  • Song Young-Joan
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.26-30
    • /
    • 2005
  • It is important to know phase offsets of PN(Pseudo Noise) sequences in spread spectrum communications since the acquisition is equivalent to making a phase offset between a receiving PN sequence and a PN sequence of local PN generator be identical. In this paper, a phase offset enumeration method for PN sequences with error detection, and its application to the synchronization are proposed. The phase offset enumeration for an n-tuple PN sequence and its error detection are performed when one period of the sequence is received. Once the phase offset of the receiving sequence is calculated, we can easily accomplish the synchronization by initializing shift registers of a local PN generator according to the phase offset value. The mean acquisition time performance of the proposed scheme was derived analytically. Since this synchronization scheme can be realized by using simple circuit and acquires very rapid acquisition in high SNR but shows performance degradation in low SNR, it can be especially useful in indoor and office environments.

Analysis of Transmission Performance of Communication Security Bit Synchronization Information in VMF System (가변메시지형식체계에서 통신보안을 위한 비트동기 정보의 전송영향 분석)

  • Park Youngmi;Son Youngho;Yoon Janghong;Hong Jinkeun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.443-446
    • /
    • 2005
  • In this paper, we analyses transmission performance of communication security(COMSEC) bit synchronization information over the single channel ground and airborne radion system in variable message format system. Experimental results demonstrate the robust characteristics of the COMSEC bit synchronization information in 10-1 $\~$ 10-5 of bit error channel and the relationship of time duration of bit synchronization and probability of synchronization detection.

An efficient method and performance analysis for burst synchronization/error detection using cyclic codes (순환코드를 이용한 효율적인 동기/에러 검출 방법 및 성능분석)

  • 최양호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2013-2022
    • /
    • 1996
  • Cyclic Codes can be used for burs(or time slot) synchronization as well as error detection as that the overhead bits of the burst, which would be nessary to seperate burst synchronization and error detection systems, may be eliminated. In this paper a new method for combined burst synchronization and error detection is proposed which requires CRC decoding once only, while the previous method which inspects channel error after searching for burst synchronization requeires CRC decoding twice. The proposed method has the advantage of simple implementation and reducing processing time over the previous one, still showing the same detection perfdormance. It may occur that a burst different from the actually transmitted one is falsely accepted in the presence of channel errors. The exact expression for the false acceptance probability is newly presented through a simple derivation basied on the fact that it is determined by channel errors but not by detection methods.

  • PDF

A Study of High-Precision Time-Synchronization for TDoA-Based Location Estimation (TDoA 기반의 위치 추정을 위한 초정밀 시각동기에 관한 연구)

  • Kim, Jae Wan;Eom, Doo Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • Presently, there are many different technologies used for position detection. However, as signal-receiving devices operating in different locations must detect the precise position of objects located at long distances, it is essential to know the precise time at which an object's or a user's terminal device sends a signal. For this purpose, the existing time of arrival (ToA) technology is not sufficiently reliable, and the existing time difference of arrival (TDoA) technology is more suitable. If a TDoA-based electric surveillance system and other tracking devices fail to achieve precise time-synchronization between devices with separation distance operation, it is impossible to obtain correct TDoA values from the signals sent by the signal-receiving devices; this failure to obtain the correct values directly affects the location estimation error. For this reason, the technology for achieving precise time synchronization between signal-receiving devices in separation distance operation, among the technologies previously mentioned, is a core technology for detecting TDoA-based locations. In this paper, the accuracy of the proposed time synchronization and the measurement error in the TDoA-based location detection technology is evaluated. The TDoA-based location measurement error is significantly improved when using the proposed method for time-synchronization error reduction.

Synchronization of T-S Fuzzy Chaotic System with Time-Delay and Input Saturation (시간지연과 입력포화를 갖는 T-S 퍼지 카오스 시스템의 동기화)

  • Kim Jae-Hun;Shin Hyunseok;Kim Euntai;Park Mignon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents a fuzzy model-based approach for synchronization of time-delay chaotic system with input saturation. Time-delay chaotic drive and response system is respectively represented by Takagi-Sugeno (T-S) fuzzy model. Specially, the response system contains input saturation. Using the unidirectional linear error feedback and the parallel distributed compensation (PDC) scheme, we design fuzzy chaotic synchronization system and analyze local stability for synchronization error dynamics. Since time-delay in the transmission channel always exists, we also take it into consideration. The sufficient condition for the local stability of the fuzzy synchronization system with input saturation and time-delay is derived by applying Lyapunov-Krasovskii theory and solving linear matrix inequalities (LMI's) problem. A numerical example is given to demonstrate the validity of the proposed approach.

A Design and Implementation of Range Adaptive Time Synchronization on USV Maritime Wireless Communication (무인수상정 해상무선통신 거리 적응적 동기화 설계 및 구현)

  • Park, Hyunsung;Kim, Taehyeon;Gwak, Sangyell;Noh, Wooyoung;Oh, Jimyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.640-648
    • /
    • 2018
  • Time division wireless communication in tactical MANET is attractive to deliver both high data rates and long-range coverage, and to provide scheduled QoS to mission participants. This paper is about the time synchronization issue of multi-mission USV in tactical MANET. As USV communication coverage becomes longer, the synchronization error also becomes higher; therefore, which results in link disconnection, and consequent failures of reconnection because base station cannot configure necessary parameters over long-distant terminal. We propose a range adaptive time synchronization method to compensate for synchronization errors. The issue of long-range time synchronization problem was identified during maritime communication tests, and we verified the proposed method through analyses of both indoor and outdoor test results.

A New Simplified Clock Synchronization Algorithm for Indoor Positioning (실내측위를 위한 새로운 클락 동기 방안)

  • Lee, Young-Kyu;Yang, Sung-Hoon;Lee, Seong-Woo;Lee, Chang-Bok;Kim, Young-Beom;Choe, Seong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.237-246
    • /
    • 2007
  • Clock Synchronization is one of the most basic factors to be considered when we implement an indoor synchronization network for indoor positioning. In this paper, we present a new synchronization algorithm which does not employ time stamps in order to reduce the hardware complexity and data overhead. In addition to that, we describe an algorithm that is designed to compensate the frequency drift giving an serious impact on the synchronization performance. The performance evaluation of the proposed algorithm is achieved by investigating MTIE (Maximum Time Interval Error) values through simulations. In the simulations, the frequency drift values of the practical oscillators are used. From the simulation results, it is investigated that we can achieve the synchronization performance under 10 ns when we use 1 second synchronization interval with 1 ns resolution and TCXOs (Tmperature Compensated Cristal Oscillators) both in the master clock and the slave clock.

Design and Implementation of Precision Time Synchronization in Wireless Networks Using ZigBee (ZigBee를 이용한 무선 네트워크 환경에서의 정밀 시각 동기 기법 설계 및 구현)

  • Cho, Hyun-Tae;Son, Sang-Hyun;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.561-570
    • /
    • 2008
  • Time synchronization is essential for a number of network applications such as high speed communication and parallel/distribution processing systems. As the era of ubiquitous computing is ushered in, the high precise time synchronization in wireless networks have been required in. This paper presents the design ana the implementation of the high precision time synchronization in wireless networks using ZigBee. To achieve high precision requirements, we have tried to analyze and reduce error factors such as the latency and jitters of a protocol stack on wireless environments. In addition, this paper includes some experiments and performance evaluations of our system. The result is that we established for nodes in a network to maintain their elects to within a 50 nanosecond offset from the reference clock.

Combined Time Synchronization And Channel Estimation For MB-OFDM UWB Systems

  • Kareem, Aymen M.;El-Saleh, Ayman A.;Othman, Masuri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1792-1801
    • /
    • 2012
  • Symbol timing error amounts to a major degradation in the system performance. Conventionally, timing error is estimated by predefined preamble on both transmitter and receiver. The maximum of the correlation result is considered the start of the OFDM symbol. Problem arises when the prime path is not the strongest one. In this paper, we propose a new combined time and channel estimation method for multi-band OFDM ultra wide-band (MB-OFDM UWB) systems. It is assumed that a coarse timing has been obtained at a stage before the proposed scheme. Based on the coarse timing, search interval is set (or time candidates). Exploiting channel statistics that are assumed to be known by the receiver, we derive a maximum a posteriori estimate (MAP) of the channel impulse response. Based on this estimate, we discern for the timing error. Timing estimation performance is compared with the least squares (LS) channel estimate in terms of mean squared error (MSE). It is shown that the proposed timing scheme is lower in MSE than the LS method.