• Title/Summary/Keyword: Time Step

Search Result 5,369, Processing Time 0.038 seconds

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.

A Study on the Manabe Standard Form Using the Evolutionary Strategy (진화전략을 이용한 Manabe 표준형에 관한 연구)

  • 강환일;정요원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2001
  • The step response of the Manabe standard form[2] has little overshoot and show almost same waveforms regardless of the order of the characteristic polynomials. In some situations it is difficult to control the rise time and settling time simultaneously of the step response of the Manabe standard form To control its rise time and settling time efficiently, We develop the Manabe standard form: We try to find out the SRFS(Slow Rise time & Fast Setting time) form which has the slower rise time and faster settling time than those fo the Manabe standard form. We also consider the other three forms: FRSS(Fast Rise time & Slow Settling time), SRFS(Slow Rise time & Fast Settling time) and SRSS(Slow Rise time & Slow Settling time) forms. In this paper, by using the evolutionary strategy, we obtain all the coefficient of the four forms we mention above. Finally, we design a controller for a given plant so that the overall system has the performance that the rise time is faster, the settling time is faster than those of the Manabe standard form.

  • PDF

Development of Step Motor for Time Switch (Time Switch용 Step Motor 개발)

  • Kim, Chul-Ho;Lee, Woo-Suk;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1147-1149
    • /
    • 2005
  • Time switch is widely used to reduce the energy loss by selecting the duration of daily-based operating pattern for the electrical apparatus. Driving force of the time switch is the single-phase step motor which has the starting torque due to the asymmetrical airgap. Cogging and total torque of the tapered-airgap motor is analyzed by finite element method.

  • PDF

Blood Pressure Measurement using the Modified Step-wise Deflation Method (개선된 계단 배기 방법을 이용한 혈압 측정)

  • Oh, Hong-Sic;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.351-358
    • /
    • 2010
  • In the automatic non-invasive blood pressure measurement device, the oscillometric method iswidely used. In the oscillometric method, the step-wise deflation has the advantage of the robustness for the motion artifacts than the linear deflation method. But it has the disadvantage of its longer measurement time because we need to detect two or more pulses in a certain cuff pressure step. In this study, we suggest the modified step-wise deflation method to overcome this limitation while maintaining the general concept of step-wise deflation. Using one valid pulse in each step and the deflating valve control during the diastolic period, the measurement time could be reduced. In order to verify the accuracy of the proposed algorithm, we compared the blood pressure values from the suggested method and the blood pressure values from the conventional auscultation method. The mean and standard deviation were -0.50${\pm}$5.3mmHg and 2.08${\pm}$4.75mmHg, for systolic and diastolic blood pressure respectively. The measurement time can be reduced up to the half of conventional step-wise deflation method.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

An AHP Approach to Select the Task Related Technique for Work Efficiency Improvement in Shipbuilding Enterprise (AHP에 의한 조선기업의 작업능률향상을 위한 과업관련기법의 선택)

  • Kim, Tae-Soo;Lee, Kang-Woo
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.31-37
    • /
    • 2006
  • The objective of this research is to select the most effective technique from task related techniques(motion & time study, job redesign, physical environment improvement) for improving work efficiency in shipbuilding enterprise. This study consists of several principal steps. The first step is to design critical criteria in evaluating work efficiency in shipbuilding enterprises. The second step is to develop sub-criteria of the critical criteria. The third step is to develop a four level AHP(Analytic Hierarchy Process)structure using the critical criteria, sub-criteria and techniques from task related techniques. The fourth step is to develop the pairwise comparison matrix by each level of AHP structure, which was based on survey data collected at the H heavy industry. And the last step is to select the most effective technique from task related techniques using AHP analysis. The result of AHP analysis has shown clear difference in priority among task related techniques in terms of work efficiency of the shipbuilding enterprise: The reduction of normal time has more importance than the reduction of allowance time, motion & time study techniques are most important for the reduction of normal time, physical environment improvement is most important for the reduction of allowance time as well.

  • PDF

An AHP Approach to Select the Task Related Technique for Work Efficiency Improvement in Shipbuilding Enterprise (AHP에 의한 조선기업의 작업능률향상을 위한 과업관련기법의 선택)

  • Kim, Tae-Soo;Lee, Kang-Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.67-74
    • /
    • 2007
  • The objective of this research is to select the most effective technique among task related techniques(motion & time study, job redesign, physical environment improvement) for improving work efficiency in shipbuilding enterprise. This study consists of several principal steps. The first step is to design critical criteria in evaluating work efficiency in ship-building enterprises. The second step is to develop sub-criteria of the critical criteria. The third step is to develop a four level AHP(Analytic Hierarchy Process) structure using the critical criteria, sub-criteria and techniques among task related techniques. The fourth step is to develop the pairwise comparison matrix at each level of AHP structure, which was based on survey data collected at the H heavy industry. And the last step is to select the most effective technique among task related techniques using AHP analysis. The result of AHP analysis has shown clear difference in priority among task related techniques in terms of work efficiency of the shipbuilding enterprise: The reduction of normal time is more important than the reduction of allowance time in improving of the work efficiency. Motion & time study is the most important technique for the reduction of normal time, and physical environment improvement is the most important technique for the reduction of allowance time as well.

Correction of the Approximation Error in the Time-Stepping Finite Element Method

  • Kim, Byung-Taek;Yu, Byoung-Hun;Choit, Myoung-Hyun;Kim, Ho-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.229-233
    • /
    • 2009
  • This paper proposes a correction method for the error inherently created by time-step approximation in finite element analysis (FEA). For a simple RL and RLC linear circuit, the error in time-step analysis is analytically investigated, and a correction method is proposed for a non-linear system as well as a linear one. Then, for a practical inductor model, linear and non-linear time-step analyses are performed and the calculation results are corrected by the proposed methods. The accuracy of the corrected results is confirmed by comparing the electric input and output powers.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Experimental Test Time Reduction Method for Step Responses Using the Time-Optimal Control Technique (시간최적제어 기법을 이용한 계단응답 실험시간 단축 방법)

  • Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.190-196
    • /
    • 2020
  • The step to obtain a process dynamic model through process experiments is very important because it needs times and expenditures. Step response method is one of the standard methods to have long been used for understanding process dynamics, obtaining dynamical models and designing control systems. For the step response, it is usually required to measure process output for a step input change in the open-loop manner. Its disadvantage criticized is the long open-loop operation. For this, a method based on the time-optimal control technique to minimize the test time for obtaining the step response has been recently presented. However, the method requires iterative computations for the minimization of test times. Here, a method where iterative computations are not required is proposed. Simulation results are presented to show that test times to obtain step responses are reduced considerably and an autotuning method based on the proposed method is compared with the relay feedback autotuning method accepted widely for the autotuning of controllers.