• Title/Summary/Keyword: Time Simulation

Search Result 16,132, Processing Time 0.04 seconds

An interactive environment for simulation and real-time implementation of control systems

  • Koga, Masanobu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.336-339
    • /
    • 1995
  • An approach to efficient implementation of real-time control systems is presented in this paper. A compiler for translation of control algorithms is used in combination with a general program for real-time control. The compiler translates control algorithms written for the simulation in a design language to an implementation language. The translated algorithms are then automatically incorporated in the real-time control program.

  • PDF

A Real Time HILS of the Guidance Flight System (시선지령 유도 비행체의 실시간 실물 시뮬레이션 기법)

  • 김영주;이종하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.4
    • /
    • pp.638-647
    • /
    • 1994
  • This paper describes the real time Hardware-In-the Loop Simulation(HILS) that is an efective tool for design, testing and performance evaluation of the guidanc eflight system. The real time HILS was performed by using a 3-axis flight motion simulator, real time computer, I/O system and flight control system hardware along with the assumed flight trajectory of the guidance flight system. Also, we proved the validity of the real time HILS is the guidance flight system by comparing its simulation results with the software simulation data and telemetry data.

Effects of Cell Residence Time Distributions in Cellular Mobile Communication Systems

  • Yeo, Kun-Min;Jun, Chi-Hyuck
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.6-10
    • /
    • 1999
  • We present a simulation result to the analysis of the effects of cell residence time distributions upon the expected channel occupancy time based on an analytic mobility model. Numerical examples show that exponential distribution provides upper and lower bound to the expected channel occupancy times of new calls and handoff calls. This fact reveals that the assumption of exponential distribution as the cell residence time distribution as the cell residence time distribution may over- or under-estimate cellular mobile systems.

  • PDF

Localized evaluation of actuator tracking for real-time hybrid simulation using frequency-domain indices

  • Xu, Weijie;Guo, Tong;Chen, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.631-642
    • /
    • 2017
  • Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation.

Effects of computer and demonstration scenario simulation using smart fire evacuation guidance on evacuation induction and time (스마트 화재대피 유도 컴퓨터 및 실증 시나리오 시뮬레이션이 피난 유도와 시간에 미치는 영향)

  • Shin, Dong-Min;Cho, Byung-Jun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.244-253
    • /
    • 2021
  • This study examined how the fire evacuation induction service system using a smartphone navigation application in the event of a fire affects the fire evacuation time, and the following conclusions were drawn. 1. The evacuation time was reduced by 22 seconds when the navigation application was used in computer scenario simulation. Even in the demonstration simulation, the evacuation time was reduced by 40 seconds when the navigation application was used. This indicates that the navigation application is effective in shortening the evacuation time in case of fire. 2. As a result of the demonstration scenario simulation, the time until the end of evacuation was 39 seconds faster in the case of evacuation guidance than in the case where it was not conducted. 3. No bottlenecks occurred in the evacuation route during the demonstration scenario simulation. As a result, there was a difference in the time required to complete the evacuation between the computer scenario simulation and the demonstration scenario simulation.

Block Erection Simulation Using the Integrated System of Combined Discrete Event and Discrete Time Simulation Kernel (이산 사건 및 이산 시간 혼합형 시뮬레이션 커널의 통합 시스템을 이용한 블록 탑재 시뮬레이션)

  • Cha, Ju-Hwan;Roh, Myung-Il;Cho, Doo-Yeoun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.303-312
    • /
    • 2009
  • Recently, requests for the accurate process planning using modeling and simulation technique are increasing in many engineering fields including shipbuilding industry. In this study, Combined DEVS(Discrete EVent System specification) and DTSS(Discrete Time System Specification) simulation kernel is developed, and an integration strategy of dynamics simulation module and graphics module is also implemented. To evaluate the efficiency and applicability of the simulation kernel and integration strategy, these are applied to the block erection simulation of offshore structures.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Sensitivity Analysis of Numerical Variables Affecting the Electromagnetic Forming Simulation of a High Strength Steel Sheet Using a Driver Sheet (수치적 변수들이 배면판을 이용한 고강도 강판의 전자기 성형 해석에 미치는 영향도 분석)

  • Park, H.;Lee, J.;Lee, Y.;Kim, J.H.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.28 no.3
    • /
    • pp.159-166
    • /
    • 2019
  • Electromagnetic forming (EMF) simulations consider 3-dimensionally coupled electromagnetic-mechanical phenomenon using LS-DYNA, therefore the calculation cost is normally expensive. In this study, a sensitivity analysis in regard to the simulation variables affecting the calculation time was carried out. The EMF experiments were conducted to form an elliptically protruding shape on a high-strength steel sheet, and it was predicted using LS-DYNA simulation. In this particular EMF simulation case, the effect of several simulation variables, viz., element size, contact condition, EM-time step interval, and re-calculation number of the EM matrices, on the shape of elliptical protrusion and the total calculation time was analyzed. As a result, reasonable values of the simulation variables between the simulation precision and calculation time were proposed, and the EMF experiments with respect to the charging voltages were successfully predicted.

An Advanced Method of Simulation and Analysis for Electromagnetic Environment on the Mobile Receiver in a Shielded Anechoic Chamber

  • Kim, Jung-Hoon;Rhee, Joong-Geun
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.229-234
    • /
    • 2006
  • This paper presents an advanced method of simulation for EM(electromagnetic) environment that affects on mobile receivers. A new calibration algorithm in the process of simulation is introduced. With a proposed calibration method, the time required for simulation is reduced and this makes it possible to simulate a near-real time EM environment in a shielded anechoic chamber. EM environment data acquisition and logging techniques with GPS for simulation were developed.

Verification of Real-time Hybrid Test System using RC Pier Model (RC교각을 이용한 실시간 하이브리드 실험 시스템의 적용성 연구)

  • Lee, Jinhaeng;Park, Minseok;Chae, Yunbyeong;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.253-259
    • /
    • 2018
  • Structure behaviors resulting from an earthquake are experimentally simulated mainly through a shaking table test. As for large-scale structures, however, size effects over a miniature may make it difficult to assess actual behaviors properly. To address this problem, research on the hybrid simulation is being conducted actively. This method is to implement numerical analysis on framework members that affect the general behavior of the structure dominantly through an actual scale experiment and on the rest parts by applying the substructuring technique. However, existing studies on hybrid simulation focus mainly on Slow experimental methods, which are disadvantageous in that it is unable to assess behaviors close to the actual level if material properties change depending on the speed or the influence of inertial force is significant. The present study aims to establish a Real-time hybrid simulation system capable of excitation based on the actual time history and to verify its performance and applicability. The hybrid simulation system built up in this study utilizes the ATS Compensator system, CR integrator, etc. in order to make the target displacement the same with the measured displacement on the basis of MATLAB/Simulink. The target structure was a 2-span bridge and an RC pier to support it was produced as an experimental model in order for the shaking table test and Slow and Real-time hybrid simulations. Behaviors that result from the earthquake of El Centro were examined, and the results were analyzed comparatively. In comparison with the results of the shaking table test, the Real-time hybrid simulation produced more similar maximum displacement and vibration behaviors than the Slow hybrid simulation. Hence, it is thought that the Real-time hybrid simulation proposed in this study can be utilized usefully in seismic capacity assessment of structural systems such as RC pier that are highly non-linear and time-dependent.