'95 KACC (1995. 10. 23 ~ 25)

AN INTERACTIVE ENVIRONMENT FOR SIMULATION AND
REAL-TIME IMPLEMENTATION OF CONTROL SYSTEMS

°Masanobu Koga*

Department of mechanical and Environmental Informatics
Graduate School of Information Science and Engincering
Tokyo Institute of Technology, 2-12-1. Oh-okayama, Meguro-ku. Tokyo 152. JAPAN
Tel: 4+81-3-5734-2328: Fax: +81-3-5734-2552: E-mail: koga@mei.titecl.ac.jp

Abstracts An approach to efficient implementation of real-time control systems is presented in this paper.
A compiler for translation of control algorithis is used in combination with a general program for real-time
control. The compiler translates control algorithms. written for the simulation in a design language. to an
implementation language. The translated algorithins are then automatically incorporated in the real-time

control program.

Keywords Real-tinie control, Simulation, CADCS

1. INTRODUCTION

Current Computer Aided Design of Control System
(CADCS) packages cover most spectrum of classical
and modern control theory, and are being continuously
updated with the latest advances in nwnerical control
algorithms. In this way modern control engineers have
access to the most recent powerful and robust control
techniques to meet the still increasing demands from in-
dustry. However in real-time applications the execution
speed of the numerical control algorithms has also to be
considered. As the newly developed control algorithms
tend to be more and more complex. the on-line imple-
mentation requires much more time for programming
and consideration of real-timme problems.

An approach to efficient implementation of real-tune
control systems is presented in this paper. A compiler
for traunslation of control algorithns is used in com-
bination with a general program for real-time control.
The compiler translates control algorithms, written in
a design language. to an implementation language, and
generates code for real-time program. The resulting ex-
ecutable program have a number of interactive facilities
such as matrix editor, plotting and textual display of
all variables, and data logging. The design language is
chosen as MATX [1, 2, 3, 4], and the implementation
language is chosen as C. The systen has been used in
research and education. and has reduced the nnplemen-
tation time considerably, e.g. when developing new lab-
oratory exercises, or when a control algorithm is tested
in a laboratory experiment.

2. MATX

MATX [1. 2, 3. 4] is a high-performance program-
ming language for general scientific and engineering nu-
merical and symbolic computation. It is a type-oriented
language and is equipped to recognize several data types
siuch as integer. real number, complex number. string.

336

polynomial. rational polynomial, matrix. array. index,
and list. It has also inherited many features of C lan-
guage such as variable declaration, control-flow. and
style of function.

MATX provides not only command-line interpreter
(matx) whose interfaces are similar to the usc of MAT-
LAB [5] but also compiler (matc) which accepts the
same syntax as that of matx and outputs portable C
language code. The user can extend the functional-
ity of a program by realizing algorithms as functions
in “mu-files”. The interpreter cnables us to test out
the mm-files interactively file-by-file or line-by-line. If
the mm-file implementation of an algorithm is not effi-
cient enougl. the examined mm-files are compiled into
portable C language files with the compiler. Then those
C files are compiled and linked up with the class library
(MATX-Lib) [3] with a C compiler to generate the de-
sired executable program. It is possible to call user C
functions from MATX functions by linking C language
routines to the executable program.

3. SIMULATION

How to write a simulation program in MATX is stated
in this section. We consider the inverted pendulum
shown in Fig. 1. The detailed explanation is not given
due to limited pages of the paper. We design a LQ opti-
mal controller and an observer for the linearized model,
and descritize the observer with the sampling interval.

3.1 Simulation of inverted pendulum

List 1 shows the main function for a hybrid-time
simulation of the pendulum. The term ‘hybrid-time
simulation’ means siinulation of continuous-time plants
with digital controller. The function 0de45HybridAuto ()
takes six arguments: the initial time t0. the terminal
time tf. sampling interval dt between which the con-
stant input u is applied to the plant. initial state vector

motor

- potentio

amp

Figure 1: Inverted pendulum

x0, name (diff_eqs) of the function which calculates
the derivative dx of state vector, and name {link_eqs)
of function which calculates input u. The differential
equation is integrated according to RKF45 algorithn
automatically changing the step size to guarantee the
prespecified error.

Real a32, a33, a34, a35, a42,a43,ad4,ad5;
Real b3, b4, alpha;
Matrix C, F, Ah, Bh, Ch, Dh, Jh, Xo;

Func void main()
{
Real t0, tf, dt;
Matrix TC, XC, UC, x0;
void para_init(),diff_eqs(),link_eqs();

para_init(); // parameter initializatiomn
t0 = 0.0; tf = 3.0; dt = 0.005;

x0
Xo

[0 30.0/180.0%PI 0 0]’;
2(2,1); // state of observer

{TC, XC, UC} =
Ode45HybridAuto(t0, tf, dt, x0,
diff_eqs, link_eqs);

List 1: Main function of simulation

List 2 and List 3 show the function diff_eqs() and
link_eqs() (in this example) which must have certain
format. The format of the former specifies that the ar-
guments list contain four variables and the latter spec-
ifies that the arguments list contain three variables.

Func void diff_eqs(DX, t, X, U)
Matrix DX, X, U;
Real t;

{
Real x1, x2, x3, x4, u, c2, s2, dm;

x1 = X(1); // position of cart

x2 = X(2); // angle of pendulum

x3 = X(3); // velocity of cart

x4 = X(4); // angular velocity of pend.

u =U(1); // input

c2 = cos(x2); s2 = sin(x2);

dm = (1 + alpha*s2°2);

DX = Z(4,1);

DX(1) = X(3);

DX(2) = X(4&);

DX(3) = (a32%s2*c2 + a33*x3 + a34x*c2*x4
+ a35*%s2*x4°2 + b3*u)/dm;

DX(4) = (a42%s2 + a43*c2*x3 + add*x4

+ a4bxs2%c2*%x4"2 + bd*xc2#*u)/dm;

List 2: Function for dynamic equation

In the function diff_eqs(). the first variable dx is
derivative of state (return variable) and has the same
dimension as x, the second variable t is a real number
which represents time, the third variable x is a vector
of the state values, and the fourth variable u is the
input to the system. In the function link.eqgs(), the
first variable u is the input (returu variable), the second
variable t 1s a real number which represents time, the
third variable x is a vector of the state values.

Func void link_eqs(U, t, X)
Matrix U, X;

Real t;

{

Matrix Y, Xh;

Y =C * X; // output equation
Xh = Ch#Xo + Dh*Y; // state estimation
U = - FxXh; // state feedback
Xo = Ah*Xo + Bh*Y + Jh*U; // observer

}

List 3: Function for relation between signals

4. REAL-TIME CONTROL

4.1 Real-time program

A real-time program in MATX cousists of three func-

tions: main function main(), on-line function on_task().

and off-line function off_task loop().

List 4 shows an example of the main function. Once
the function rtStart() is called, on_task() is called
every sampling period.

337

P

Func void main()

{
para_init();
var_init();
machine_ready();

// initialize param.
// initialize var.
// prepare machine

rtSetClock(stime); // sampling interval
rtSetTask(on_task); // set on-line func
rtSetBreak(break_task); // set break func

/7
//
//

//

rtStart();
off_task_loop();
rtStop();

start on-line func
off-line task
stop on-line func

machine_stop(); stop machine

List 4: Main function of real-time control

The on-line function for the control of double-cart
system is shown in List 5. The function semnsor()
returns measured outputs and actuator() gives the
torque of the motor.

Func void on_task()

Real r;
Matrix yy, v, xf, u;

// reference signal
r=ml*sin(wi*stime*t)+m2*sin(w2*stime*t);

tT++,

yy = sensor(); // sensor output

y=I[0[r -yy(1D] // measured outpl
{y(1) - yy(2)1]; // measured outp2

xf = A*x +B=*y; // controller state

u= Cx*xx+D=x*y; // control input

x = xf; // save controller state

actuator(u); // output to actuator

List 5: On-line function of recal-time control

List 6 shows an example of off-line function. The
function rtIsTimeOut () checks if the on-line function
finished in the sampling interval.

Func void off_task_loop()
{

Integer c;

while (1) {
if (rtIsTimeOut()) {
warning("Time Out\n");
break;

}

printf("y1 = %f, y2 = %", y(1), y(2));
if (kbhit() && getch() == 0x1b) break;

List 6: Off-line function of real-time control

338

4.2 Memory management

In real-time applications the execution speed of the
numerical control algorithins are to be considered. As
the newly developed control algorithms tend to be more
complex. tlie ou-line implementation requires mucli more
time for programming. An approach to efficient imple-
mentation of real-time control systems is to use a com-
piler which translates control algorithins. written in a
design language, to an implementation language. And
the design language should support useful data types,
such as matrix. polynomial. and rational polynomial.
Since these data types require dynamic memory allo-
cation. we have to consider the efficient memory man-
agement. The ou-line memory management in MATX
is stated in this subsecction.

The all program in MATX are build upon MaTX-
Lib which is a collection of useful class libraries. Since
the all data types use the same memory management,
we treat matrix class here.

The memory allocation of matrix class is managed
according to the state transition of the object shown in

Fig. 2.

REV SYS
InstallM e
atpe
MatRequest MatDestroy
TMP
MatAssign MatFree
VAR

Figure 2: Memory management in MATX
The matrix object takes four states:

1
2
3
4

. SYS (Maintained in the operating system)

. TMP (Allocated by malloc())

. VAR (Assigned to the variable)

. REV (Maintained in the table of free object)

The state changes by the following function calls.

e MaDef () gets the memory from the operating sys-
tem by calling malloc().

MatDestroy() returns the memory to the oper-
ating system by calling free().

MatAssign() assigus a matrix to a variable. The
state of the matrix changes from TMP to VAR. The
matrix in VAR is not effected by MatTmpUndef ().
MatFree() changes the state of the matrix from
VAR to TMP. This means that the variable is re-
leased.

e MatInstall() installs a matrix object to the ta-
ble of free object. The state of the matrix changes
from TMP to REV.

o MatRequest() gets the memory from the table
of free object. The state of the matrix changes
from REV to TMP. Not that MatRequest() takes
less time than MatDef ().

When the memory for a matrix object is required,
a suitable size matrix in the table of free object is used.
If there is no suitable size matrix object in the ta-
ble, the allocation function MatDef() calls malloc()
to get more memory from the operating system. This
memory allocation strategy reduces the function calls of
malloc() and free() and makes the execution speed
fast. It is especially efficient for the program. in which
the same function is repeatedly called, such as simula-
tion and real-time control.

5. EXAMPLE

5.1 Inverted pendulum

The implementation of real-time control of the in-
verted pendulum, whose simulation program is shown
in section 3, is very easy. We only change the function
link_eqs() in the simulation program to on_task() as
follows.

Func void on_task()

{
Matrix Y, Xh;

Y = sensor(); // measured output
Xh = Ch*Xo + DhxY; // state estimation
U = - F*Xh; // state feedback

actuator(U); control input
Xo = Ah*Xo + BhxY + Jh*U; // observer

List 7: Real-time control of inverted pendulum

5.2 Double-cart system

We compare the execution speed of the real-time
control programs written in MATX and C. The MaATX
program and C program are shown in List 5 and List 8,
respectively. The IBM-PC/AT computer with pentium
60MHz is used for experiment. The shortest sampling
intervals by both programs are shown in Table 1.

6. CONCLUDING REMARKS

An approach to efficient implementation of real-time
control systems was presented. The compiler trans-
lates control algorithms, written in a design language,
in which we can use matrix, polynomial, and so o,
to an implementation language. We showed an illus-
trative example, written in the design language, whose

execution speed is significantly faster than that of the
program written in C.

Table 1: The shortest sampling interval of RTC

C program
1.6 [1s]

MATX progran
1.1 [ms]

void on_task()
{
int i, j;
double r, yy[2], y[2]1, xf[8], u[2];

r=ml*sin(wil*stime*t)+m2*sin(w2*stime*t);

t++;

sensor(yy);

yl0l] = r - yy[0];

y[1] = y[0] - yy{1];

/* xf = Axx + Bxy */

for (i = 0; 1 < 8; i++) {
xf[i] = 0.0;
for (j = 0; j < 8; j++)

xf[i] += A[i][j1*x[j1;
xf[i] += B[11[0]*y[0] + B{il[1]1=*y[1]

>

/* u C*x
ul0] uf1]
for (i = 0;
ul0] +=
ul1] +=

Dxy =/

0.0;

< 8; i++) {
Cl0] [i)*x[i];
CL1][i)*x[i];

b
ulo] += D[0][0]*y[0] + D[0][1]*y[1];
- uf1] += D[1]1{0]}*y[0] + D[1}[1])*y[1];

+

0o

-

for (i = 0; i < 8; i++) x[i]
actuator(u);

xf[i];

339

List 8: Real-time control of double-cart system

REFERENCES

[1] Masanobu Koga and Katsuhisa Furuta. MaTX : A
high-performance interactive software package for scien-
tific and engincering computation. Proc. of CADCS 91,
Swansea. U. K., pages 39- 44, 1991.

Masanobu Koga and Katsuhisa Furuta. MaTX : A high-
performance programming langnage (iuterpreter and
compiler) for scientific and engineering computation.
Proc. of CACSD’92. Napa. U.S.A.. pages 15 22, 1992.

Masanobn Koga and Katsuhisa Furuta. Programming
language MaTX for scientific and engincering computa-
tion. In Derek A. Linkens, editor, CAD for Control Sys-
tems. chapter 12, pages 287-317. Marcel Dckker, Inc.,
July 1993.

Masanobu Koga, Mitsuji Sampei, and Katsuhisa Furuta.
A compiler of matlab to MaTX: Compiling and linking
of m-files to an executable program. Proc. of CACSD 94,
Tucson, Arizona. U.S.A., pages 137-142, 1994.

C. Moler. J. Littel, and S. Bangert. PC-MATLAB -
User’s Guide. N. Main St.. Sherborn. MA 01770, USA,
3.1 edition, 1987.

2]

(3]

(4]

(5]

