Kim, Myung-Sup;Kim, Sung-Yun;Park, Jun-Sang;Choi, Kyung-Jun
The KIPS Transactions:PartC
/
v.15C
no.2
/
pp.93-102
/
2008
The network weather map and bandwidth time-series graph are popularly used to understand the current and past traffic condition of NSP, ISP, and enterprise networks. These systems collect traffic performance data from a SNMP agent running on the network devices such as routers and switches, store the gathered information into a DB, and display the network performance status in the form of a time-series graph or a network weather map using Web user interface. Most of current enterprise networks are constructed in the form of a hierarchical tree-like structure with multi-Gbps Ethernet links, which is quietly different from the national or world-wide backbone network structure. This paper focuses on the network weather map for current enterprise network. We start with the considering points in developing a network weather map system suitable for enterprise network. Based on these considerings, this paper proposes the best way of using SNMP in constructing a network weather map system. To prove our idea, we designed and developed a network weather map system for our campus network, which is also described in detail.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.37-45
/
2020
The development process of deep learning is an iterative task that requires a lot of manual work. Among the steps in the development process, pre-processing of learning data is a very costly task, and is a step that significantly affects the learning results. In the early days of AI's algorithm research, learning data in the form of public DB provided mainly by data scientists were used. The learning data collected in the real environment is mostly the operational data of the sensors and inevitably contains various noises. Accordingly, various data cleaning frameworks and methods for removing noises have been studied. In this paper, we proposed a method for detecting and removing noises from time-series data, such as sensor data, that can occur in the IoT environment. In this method, the linear regression method is used so that the system repeatedly finds noises and provides data that can replace them to clean the learning data. In order to verify the effectiveness of the proposed method, a simulation method was proposed, and a method of determining factors for obtaining optimal cleaning results was proposed.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.6
/
pp.887-892
/
2019
Many researchers have developed a series of vision-based technologies to monitor construction sites automatically. To achieve high performance of vision-based technologies, it is essential to build a large amount and high quality of training image database (DB). To do that, researchers usually visit construction sites, install cameras at the jobsites, and collect images for training DB. However, such human and site-dependent approach requires a huge amount of time and costs, and it would be difficult to represent a range of characteristics of different construction sites and resources. To address these problems, this paper proposes a framework that automatically constructs a training image DB using web crawling techniques. For the validation, the authors conducted two different experiments with the automatically generated DB: construction work type classification and equipment classification. The results showed that the method could successfully build the training image DB for the two classification problems, and the findings of this study can be used to reduce the time and efforts for developing a vision-based technology on construction sites.
Factory energy management system is rapidly growing and evolving due to factors such as the 3rd Basic Energy Plan and global energy cost increases, as well as environmental issues. However, implementing an essential data collection system for energy management in factory settings, which have limited space and unique characteristics, presents spatial, environmental, and energy-related challenges. This paper endeavors to mitigate these challenges by devising a data collection system implemented through an edge-based lightweight platform. A comparison and evaluation of database operation on edge devices are conducted. To conduct the evaluation, a benchmarking tool called CDI Benchmark is developed, utilizing the characteristics of existing factories involved in practical applications. The evaluation results revealed that RDBMS systems like MySQL encountered errors in the database due to high data insertion loads, making them inoperable. On the other hand, InfluxDB, thanks to its highly efficient compression algorithm, demonstrated compression rates about 6 times higher than MyRocks according to the evaluation. However, it was observed that MyRocks outperformed InfluxDB by a significant margin, recording a maximum processing time approximately 80 times faster compared to InfluxDB.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.1
/
pp.52-56
/
2004
The Information of classification and estimate about KOSPI200 index`s up and down in the stock market becomes an important standard of decision-making in designing portofolio in futures and option market. Because the coming trend of time series patterns, an economic indicator, is very subordinate to the most recent economic pattern, it is necessary to study the recent patterns most preferentially. This paper compares classification and estimated performance of SVM(Support Vector Machine) and Fuzzy SVM model that are getting into the spotlight in time series analyses, neural net models and various fields. Specially, it proves that Fuzzy SVM is superior by presenting the most suitable dimension to fuzzy membership function that has time series attribute in accordance with learning Data Base.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.11-13
/
2021
본 논문에서는 시계열 데이터 분류를 통한 음성 감정 인식을 제안한다. mel-spectrogram을 사용하여 음성파일에서 특징을 뽑아내 다변수 시계열 데이터로 변환한다. 이를 Conv1D, GRU, Transformer를 결합한 딥러닝 모델에 학습시킨다. 위의 딥러닝 모델에 음성 감정 인식 데이터 세트인 TESS, SAVEE, RAVDESS, EmoDB에 적용하여 각각의 데이터 세트에서 기존의 모델 보다 높은 정확도의 음성 감정 분류 결과를 얻을 수 있었다. 정확도는 99.60%, 99.32%, 97.28%, 99.86%를 얻었다.
Journal of the Korean Society for Precision Engineering
/
v.19
no.7
/
pp.116-124
/
2002
The planning of part feeder and other manufacturing automation equipments is almost always underestimated. Planning ahead for those crucial pitfalls can permit steps to take to minimize heir impacts, especially if the problems can be discovered in the planning phase, not on the shop floor. Planning process is an engineering process, namely a series of trade-offs. The effective trade-offs in the shortest amount of time can be possible with the help of a computer-aided ngineering (CAE) technique. The main parts of CAE fur part feeder are database system of fabricated workpiece parts, part feeders, part feeder components. In this study, a planning process of part feeder is presented. Especially, a systematic analysis of workpiece parts and part feeders is performed for the design of databases of CAE system.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.803-809
/
2023
This paper analyzes and evaluates to optimally build a data collection system essential for factory energy management systems on an edge-based lightweight platform. A "Sensor/OPC-UA simulator" was developed based on sensors in an actual food factory and used to evaluate the storage engine of edge devices. The performance of storage engines in edge devices was evaluated to suggest the optimal storage engine. The experimental results show that when using the RocksDB storage engine, it has less than half the memory and database size compared to using InnoDB, and has a 3.01 times faster processing time. This study enables the selection of advantageous storage engines for managing time-series data on devices with limited resources and contributes to further research in this field through the sensor/OPC simulator.
Proceedings of the Korea Contents Association Conference
/
2009.05a
/
pp.463-466
/
2009
Some strategies for the integrated water management system based on GIS was suggested for the comprehensive and systematic management on the watershed. Contents of database and thematic layers for the related elements with GIS was indicated to estimate the quantity of total pollution loads and to simulate the water quality. Also, functions for the information providing was suggested on the connection with spatial data and attribute data, the search for collected data, the analysis for time series, and the visual presentations. Finally, it was suggested to integrate the existing systems and database structures, and to construct of data warehouse.
GOCI the world first Ocean Color Imager in Geostationary Orbit, which could obtain total 8 images of the same region a day, however, its spatial resolution(500m) is not enough to use for the accurate land application, Super Resolution(SR), reconstructing the high resolution(HR) image from multiple low resolution(LR) images introduced by computer vision field. could be applied to the time-series remotely sensed images such as GOCI data, and the higher resolution image could be reconstructed from multiple images by the SR, and also the cloud masked area of images could be recovered. As the precedent study for developing the efficient SR method for GOCI images, on this research, it reproduced the simulated data under the acquisition process of the remote sensed data, and then the simulated images arc applied to the proposed algorithm. From the proposed algorithm result of the simulated data, it turned out that low resolution(LR) images could be registered in sub-pixel accuracy, and the reconstructed HR image including RMSE, PSNR, SSIM Index value compared with original HR image were 0.5763, 52.9183 db, 0.9486, could be obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.