• Title/Summary/Keyword: Time Scales

Search Result 850, Processing Time 0.031 seconds

Variation of the Relationship Between Arctic Oscillation and East Asian Winter Monsoon in CCSM3 Simulation

  • Wie, Jieun;Moon, Byung-Kwon;Lee, Hyomee
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Although recent reports suggest that the negative correlation between the Arctic Oscillation (AO) and the East Asian winter monsoon (EAWM) has been strengthened, it is not clear whether this intermittent relationship is an intrinsic oscillation in the climate system. We investigate the oscillating behavior of the AO-EAWM relationship at decadal time scales using the long-term (500-yr) climate model simulation. The results show that ice cover over the East Siberian Seas is responsible for the change in the coupling strength between AO and EAWM. We found that increased ice cover over these seas strengthens the AO-EAWM linkage, subsequently enhancing cold advection over the East Asia due to anomalous northerly flow via a weakened jet stream. Thus, this strengthened relationship favors more frequent occurrences of cold surges in the EAWM region. Results also indicate that the oscillating relationship between AO and EAWM is a natural variability without anthropogenic drivers, which may help us understand the AO-EAWM linkage under climate change.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

Application of Weakly Coupled Data Assimilation in Global NWP System (전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구)

  • Yoon, Hyeon-Jin;Park, Hyei-Sun;Kim, Beom-Soo;Park, Jeong-Hyun;Lim, Jeong-Ock;Boo, Kyung-On;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

Recent progress in the theoretical understanding of relativistic electron scattering and precipitation by electromagnetic ion cyclotron waves in the Earth's inner magnetosphere

  • Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.45-60
    • /
    • 2019
  • The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.

Psychometric Testing of the Korean Version of Templer's Death Anxiety Scale among Older Adults (노인 대상 한국형 Templer의 죽음불안도구 신뢰도 및 타당도)

  • Hwang, Hyenam
    • Journal of East-West Nursing Research
    • /
    • v.25 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • Purpose: The purpose of this methodological study was to examine the validity and reliability of a translated Korean version of Templer's death anxiety scale among older adults. Methods: The translated Korean scale was administered to 203 older people who aged over 65 years. Exploratory factor analysis was utilized to assess the factor structure of the scale. Internal consistency of the scale was determined using Cronbach's ${\alpha}$ and Guttman's split-half coefficient. Results: Factor loadings of the scale ranged from .43 to .86. The scale showed good internal consistencies of both total scale (13 items, ${\alpha}=.83$) and three sub-scales: meaning of death (6 items, ${\alpha}=.77$), death-related event (5 items, ${\alpha}=.72$), and time of death (2 items, ${\alpha}=.80$). The concurrent validity compare with Fear of Death Scale was significant. The Cronbach's alpha and Guttman's split-half coefficient were .83 and .80, respectively. Conclusion: The findings of this study demonstrate that the Korean version of Templer's death anxiety scale had satisfactory validity and reliability to measure death anxiety among Korean older people.

Fault Diagnosis Method based on Feature Residual Values for Industrial Rotor Machines

  • Kim, Donghwan;Kim, Younhwan;Jung, Joon-Ha;Sohn, Seokman
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.89-99
    • /
    • 2018
  • Downtime and malfunction of industrial rotor machines represents a crucial cost burden and productivity loss. Fault diagnosis of this equipment has recently been carried out to detect their fault(s) and cause(s) by using fault classification methods. However, these methods are of limited use in detecting rotor faults because of their hypersensitivity to unexpected and different equipment conditions individually. These limitations tend to affect the accuracy of fault classification since fault-related features calculated from vibration signal are moved to other regions or changed. To improve the limited diagnosis accuracy of existing methods, we propose a new approach for fault diagnosis of rotor machines based on the model generated by supervised learning. Our work is based on feature residual values from vibration signals as fault indices. Our diagnostic model is a robust and flexible process that, once learned from historical data only one time, allows it to apply to different target systems without optimization of algorithms. The performance of the proposed method was evaluated by comparing its results with conventional methods for fault diagnosis of rotor machines. The experimental results show that the proposed method can be used to achieve better fault diagnosis, even when applied to systems with different normal-state signals, scales, and structures, without tuning or the use of a complementary algorithm. The effectiveness of the method was assessed by simulation using various rotor machine models.

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Combined Korean Medicine Treatment of a Rare Case of Burst Fracture in an Elderly Patient with Kissing Spine

  • Park, Eun-Young;Choi, Jong-Ho;Jo, Hoo-In;Lee, Soo-Kyung;Lee, June-Haeng;Kang, Sun-Woo;Won, Yoon-Jae;Choi, Sung-Ryul;Cho, Yu-Jin
    • Journal of Acupuncture Research
    • /
    • v.38 no.2
    • /
    • pp.165-169
    • /
    • 2021
  • A burst fracture refers to the fracture of the anterior and middle vertebral columns which are moving into the spinal canal causing neurological impairments, generally requiring surgical treatment. We herein report a rare case of burst fracture with kissing spine in a 90-year-old man who had severe lower back pain that worsened during back extension. Considering the surgical treatment risk, he was hospitalized at a Korean medicine hospital for 85 days and underwent combined Korean medicine treatments including pharmacopuncture, herbal medicine, chuna, deep-fascia meridian therapy, walking practice, and abdominal breathing. Based on patient-reported scales, his pain was alleviated, and his physical function improved. Furthermore, his range of motion and walking time increased. This case report suggests that combined Korean medicine treatments could be an effective alternative for patients with burst fracture who have surgery risks.

First Record of Lumpenopsis pavlenkoi Soldatov, 1916 (Pisces: Stichaeidae) Collected from Gosung, Gangwon Province, Korea (한국 강원도 고성에서 채집된 장갱이과 어류 1미기록종 Lumpenopsis pavlenkoi Soldatov, 1916)

  • Lee, Hye-Lyang;Lee, Soo Jeong;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.960-964
    • /
    • 2020
  • For the first time, a single specimen (68.47 mm in total length) of Lumpenopsis pavlenkoi Soldatov, 1916 belonging to the family Stichaeidae was collected from the northernmost area of the eastern coast of Korea (Gosung, Gangwon Province) in April, 2020, using square net (1.0 m width, 0.3 m height, 2.0 mm mesh size). This species is characterized by elongated and compressed body, absence of lateral line and cirri on head, presence of scales on cheek, dorsal fin with only 50 spines, anal fin with 2 spines and 30 soft rays, and separated operculum and isthmus. The body is yellowish with 7 saddles. The new Korean name "Kko-ma-be-do-ra-chi-sog" is proposed for the genus Lumpenopsis, and "Deung-jeom-kko-ma-be-do-ra-chi" is proposed for the species L. pavlenkoi.