Browse > Article
http://dx.doi.org/10.5140/JASS.2019.36.2.45

Recent progress in the theoretical understanding of relativistic electron scattering and precipitation by electromagnetic ion cyclotron waves in the Earth's inner magnetosphere  

Lee, Dae-Young (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.36, no.2, 2019 , pp. 45-60 More about this Journal
Abstract
The Earth's outer radiation belt has long received considerable attention mainly because the MeV electron flux in the belt varies often dramatically and at various time scales. It is now widely accepted that the wave-particle interaction is one of the major mechanisms responsible for such flux variations. The wave-particle interaction can accelerate electrons to MeV energies, explaining the observed flux increase events, and can also scatter the electrons' motion into the loss cone, resulting in atmospheric precipitation and thus contributing to flux dropouts. In this paper, we provide a review of the current state of research on relativistic electron scattering and precipitation due to the interaction with electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere. The review is intended to cover progress made over the last ~15 years in the theory and simulations of various issues, including quasilinear resonance diffusion, nonlinear interactions, nonresonant interactions, effects of finite normal angle on pitch angle scattering, effects due to rising tone emission, and ways to scatter near-equatorial pitch angle electrons. The review concludes with suggestions of a few promising topics for future research.
Keywords
electron precipitation; EMIC wave; radiation belt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ni B, Cao X, Shprits YY, Summers D, Gu X, et al., Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves, Geophys. Res. Lett. 45, 21-30 (2018). https://doi.org/10.1002/2017GL076028   DOI
2 Ni B, Cao X, Zou Z, Zhou C, Gu X, et al., Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales, J. Geophys. Res. Space Phys. 120, 7357-7373 (2015). https://doi.org/10.1002/2015JA021466   DOI
3 Omura Y, Zhao Q, Nonlinear pitch angle scattering of relativistic electrons by EMIC waves in the inner magnetosphere, J. Geophys. Res. Space Phys. 117, A08227 (2012). A08227, https://doi.org/10.1029/2012JA017943
4 Omura Y, Zhao Q, Relativistic electron microbursts due to nonlinear pitch angle scattering by EMIC triggered emissions, J. Geophys. Res. Space Phys. 118, 5008-5020 (2013). https://doi.org/10.1002/jgra.50477   DOI
5 Pickett JS, Grison B, Omura Y, Engebretson MJ, Dandouras I, et al., Cluster observations of EMIC triggered emissions in association with Pc1 waves near Earth's plasmapause, Geophys. Res. Lett. 37, L09104 (2010). https://doi.org/10.1029/2010GL042648   DOI
6 Qin M, Hudson M, Millan R, Woodger L, Shekhar S, Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons, J. Geophys. Res. Space Phys. 123, 6223-6230 (2018). https://doi.org/10.1029/2018JA025419   DOI
7 Remya B, Sibeck DG, Halford AJ, Murphy KR, Reeves GD, et al., Ion injection triggered EMIC waves in the Earth's magnetosphere, J. Geophys. Res. Space Phys. 123, 4921-4938 (2018). https://doi.org/10.1029/2018JA025354   DOI
8 Roberts CS, Schulz M, Bounce resonant scattering of particles trapped in the Earth's magnetic field, J. Geophys. Res. 73, 7361-7376 (1968). https://doi.org/10.1029/JA073i023p07361   DOI
9 Noh SJ, Lee DY, Choi CR, Kim H, Skoug R, Test of ion cyclotron resonance instability using proton distributions obtained from Van Allen Probe-A observations, J. Geophys. Res. Space Phys. 123, 6591-6610 (2018). https://doi.org/10.1029/2018JA025385   DOI
10 Rodger CJ, Raita T, Clilverd MA, Seppala A, Dietrich S, et al., Observations of relativistic electron precipitation from the radiation belts driven by EMIC waves, Geophys. Res. Lett., 35, L16106 (2008). https://doi.org/10.1029/2008GL034804   DOI
11 Schulz M, Lanzerotti LJ, Particle Diffusion in the Radiation Belts, Physics and Chemistry in Space, vol. 7 (Springer, New York, 1974), 215.
12 Saikin AA, Zhang JC, Allen RC, Smith CW, Kistler LM, et al., The occurrence and wave properties of $H^+$-, $He^+$-, and $O^+$-band EMIC waves observed by the Van Allen Probes, J. Geophys. Res. Space Phys. 120, 7477-7492 (2015). https://doi.org/10.1002/2015JA021358   DOI
13 Sandanger MI, Soraas F, Aarsnes K, Oksavik K, Evans DS, Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons, J. Geophys. Res. Space Phys. 112, A12213 (2007). https://doi.org/10.1029/2006JA012138
14 Sandanger MI., Soraas F, Sorbo M, Aarsnes K, Oksavik K, Evans DS, Relativistic electron losses related to EMIC waves during CIR and CME storms, J. Atmos. Solar. Terr. Phys. 71, 1126-1144 (2009). https://doi.org/10.1016/j.jastp.2008.07.006   DOI
15 Shoji M, Omura Y, Precipitation of highly energetic protons by helium branch electromagnetic ion cyclotron triggered emissions, J. Geophys. Res. Space Phys, 117, A12210 (2012). https://doi.org/10.1029/2012JA017933
16 Anderson BJ, Erlandson RE, Zanetti LJ, A Statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties, J. Geophys. Res. 97, 3089-3101 (1992). https://doi.org/10.1029/91JA02697   DOI
17 Albert JM, Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma, J. Geophys. Res. Space Phys. 108, 1249 (2003). https://doi.org/10.1029/2002JA009792   DOI
18 Albert JM, Bortnik J, Nonlinear interaction of radiation belt electrons with electromagnetic ion cyclotron waves, Geophys. Res. Lett. 36, L12110 (2009). https://doi.org/10.1029/2009GL038904   DOI
19 Allen RC, Zhang JC, Kistler LM, Spence HE, Lin RL, et al., A statistical study of EMIC waves observed by Cluster: 1. Wave properties, J. Geophys. Res. Space Phys. 120, 5574-5592 (2015). https://doi.org/10.1002/2015JA021333   DOI
20 Bell TF, The nonlinear gyroresonance interaction between energetic electrons and coherent VLF waves propagating at an arbitrary angle with respect to the Earth's magnetic field, J. Geophys. Res. 89, 905-918 (1984). https://doi.org/10.1029/JA089iA02p00905   DOI
21 Blum LW, Halford A, Millan R, Bonnell JW, Goldstein J, et al., Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013, Geophys. Res. Lett. 42, 5727-5735 (2015). https://doi.org/10.1002/2015GL065245   DOI
22 Bortnik J, Thorne RM, O'Brien TP, Green JC, Strangeway RJ, et al., Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event, J. Geophys. Res. Space Phys. 111, A12216 (2006). https://doi.org/10.1029/2006JA011802   DOI
23 Su Z, Zhu H, Xiao F, Zheng H, Shen C, et al., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons, J. Geophy. Res. Space Phys. 118, 3188-3202 (2013). https://doi.org/10.1002/jgra.50289   DOI
24 Shprits YY, Potential waves for pitch-angle scattering of near-equatorially mirroring energetic electrons due to the violation of the second adiabatic invariant, Geophys. Res. Lett. 36, L12106 (2009). https://doi.org/10.1029/2009GL038322   DOI
25 Shprits YY, Estimation of bounce resonant scattering by fast magnetosonic waves, Geophys. Res. Lett. 43, 998-1006 (2016). https://doi.org/10.1002/2015GL066796   DOI
26 Shprits YY, Chen L, Thorne RM, Simulations of pitch angle scattering of relativistic electrons with MLT-dependent diffusion coefficients, J. Geophys. Res. Space Phys, 114, A03219 (2009). https://doi.org/10.1029/2008JA013695
27 Silin I, Mann IR, Sydora RD, Summers D, Mace RL, Warm plasma effects on electromagnetic ion cyclotron wave MeV electron interactions in the magnetosphere, J. Geophys. Res. 116, A05215 (2011). https://doi.org/10.1029/2010JA016398
28 Su Z, Zhu H, Xiao F, Zheng H, Shen C, et al., Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models, J. Geophys. Res. Space Phys, 117, A09222 (2012). https://doi.org/10.1029/2012JA017917
29 Summers D, Ni B, Meredith NP, Horne RB, Thorne RM, et al., Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes, J. Geophys. Res. 113, A04219 (2008). https://doi.org/10.1029/2007JA012678
30 Cao X, Ni B, Summers D, Bortnik J, Tao X et al., Bounce resonance scattering of radiation belt electrons by $H^+$ band EMIC waves, J. Geophys. Res. Space Phys. 122, 1702-1713 (2017a). https://doi.org/10.1002/2016JA023607   DOI
31 Cao X, Ni, B, Summers D, Zou Z, Fu S, et al., Bounce resonance scattering of radiation belt electrons by low-frequency hiss: Comparison with cyclotron and Landau resonances, Geophys. Res. Lett. 44, 9547-9554 (2017b). doi.org/10.1002/2017GL075104   DOI
32 Chen L, Maldonado A, Bortnik J, Thorne RM, Li J, et al., Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons, J. Geophys. Res. Space Phys. 120, 6514-6527 (2015). https://doi.org/10.1002/2015JA021174   DOI
33 Chen L, Thorne RM, Bortnik J, The controlling effect of ion temperature on EMIC wave excitation and scattering, Geophys. Res. Lett. 38, L16109 (2011). https://doi.org/10.1029/2011GL048653   DOI
34 Chen L, Thorne RM, Bortnik J, Zhang XJ, Nonresonant interactions of electromagnetic ion cyclotron waves with relativistic electrons, J. Geophys. Res. Space Phys. 121, 9913-9925 (2016). https://doi.org/10.1002/2016JA022813   DOI
35 Cho JH, Lee DY, Noh SJ, Kim H, Choi CR, et al., Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements, J. Geophys. Res. Space Phys. 122, 5502-5518 (2017). https://doi.org/10.1002/2016JA023827   DOI
36 Cho JH, Lee DY, Noh SJ, Shin DK, Hwang J, et al., Van Allen Probes observations of electromagnetic ion cyclotron waves triggered by enhanced solar wind dynamic pressure, J. Geophys. Res. Space Phys. 121, 9771-9793 (2016). https://doi.org/10.1002/2016JA022841   DOI
37 Cornwall JM, Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges, J. Geophys. Res. 70, 61-69 (1965). https://doi.org/10.1029/JZ070i001p00061   DOI
38 Thorne RM, Kennel CF, Relativistic electron precipitation during magnetic storm main phase, J. Geophys. Res. 76, 4446-4453 (1971). https://doi.org/10.1029/JA076i019p04446   DOI
39 Summers D, Thorne RM, Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res. Space Phys, 108, 1143 (2003). https://doi.org/10.1029/2002JA009489   DOI
40 Tao X, Li X, Theoretical bounce resonance diffusion coefficient for waves generated near the equatorial plane, Geophys. Res. Lett. 43, 7389-7397 (2016). https://doi.org/10.1002/2016GL070139   DOI
41 Ukhorskiy AY, Shprits YY, Anderson BJ, Takahashi K, Thorne RM, Rapid scattering of radiation belt electrons by storm-time EMIC waves, Geophys. Res. Lett. 37, L09101 (2010). https://doi.org/10.1029/2010GL042906   DOI
42 Gary SP, Liu K, Chen L, Alfven-cyclotron instability with singly ionized helium: Linear theory, J. Geophys. Res. 117, A08201 (2012). https://doi.org/10.1029/2012JA017740
43 Usanova ME, Drozdov A, Orlova K, Mann IR, Shprits YY et al., Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen probes observations, Geophys. Res. Lett. 41, 1375-1381 (2014). https://doi.org/10.1002/2013GL059024   DOI
44 Wang B, Su Z, Zhang Y, Shi S, Wang G, Nonlinear Landau resonant scattering of near equatorially mirroring radiation belt electrons by oblique EMIC waves, Geophys. Res. Lett. 43, 3628-3636 (2016). https://doi.org/10.1002/2016GL068467   DOI
45 Wang G, Su Z, Zheng H, Wang Y, Zhang M, et al., Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves, J. Geophys. Res. Space Phys, 122, 1928-1945 (2017). https://doi.org/10.1002/2016JA023451   DOI
46 Drozdov AY, Shprits YY, Usanova ME, Aseev NA, Kellerman AC, et al., EMIC wave parameterization in the long-term VERB code simulation, J. Geophys. Res. Space Phys. 122, 8488-8501 (2017). https://doi.org/10.1002/2017JA024389   DOI
47 Fok MC, Glocer A, Zheng Q, Horne RB, Meredith NP, et al., Recent developments in the radiation belt environment model, J. Atmos. Sol. Terr. Phys. 73, 1435-1443, (2011). https://doi.org/10.1016/j.jastp.2010.09.033   DOI
48 Glauert SA, Horne RB, Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res. 110, A04206 (2005). https://doi.org/10.1029/2004JA010851
49 Hendry AT, Rodger CJ, Clilverd MA, Evidence of sub-MeV EMIC-driven electron precipitation, Geophys. Res. Lett. 44, 1210-1218 (2017). https://doi.org/10.1002/2016GL071807   DOI
50 Hendry AT, Rodger CJ, Clilverd MA, Engebretson MJ, Mann IR, et al., Confirmation of EMIC wave-driven relativistic electron precipitation, J. Geophys. Res. Space Phys. 121, 5366-5383 (2016). https://doi.org/10.1002/2015JA022224   DOI
51 Imhof WL, Reagan JB, Nakano GH, Gaines EE, Narrow spikes in the selective precipitation of relativistic electrons at mid-latitudes, J. Geophys. Res. 82, 117-124 (1977). https://doi.org/10.1029/JA082i001p00117   DOI
52 Imhof WL, Voss HD, Reagan JB, Datlowe DW, Gaines EE, et al., Relativistic electron and energetic ion precipitation spikes near the plasmapause, J. Geophys. Res. Space Phys. 91, 3077-3088 (1986). https://doi.org/10.1029/JA091iA03p03077   DOI
53 Cornwall JM, Coroniti FV, Thorne RM, Turbulent loss of ring current protons, J. Geophys. Res. 75, 4699-4709 (1970). https://doi.org/10.1029/JA075i025p04699   DOI
54 Zhang J, Halford AJ, Saikin AA, Huang CL, Spence HE, et al., EMIC waves and associated relativistic electron precipitation on 25-26 January 2013, J. Geophys. Res. Space Phys, 121, 11,086-011,100 (2016). https://doi.org/10.1002/2016JA022918   DOI
55 Woodger LA, Millan RM, Li Z, Sample JG. Impact of background magnetic field for EMIC wave-driven electron precipitation, J. Geophys. Res. Space Phys, 123, 8518-8532 (2018). https://doi.org/ 10.1029/2018JA025315   DOI
56 Xiao F, Chen L, He Y, Su Z, Zheng H, Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves, J. Atmos. Solar. Terr. Phys. 73, 106-111 (2011). https://doi.org/10.1016/j.jastp.2010.01.007   DOI
57 Yuan Z, Li M, Xiong Y, Li H, Zhou M, et al., Simultaneous observations of precipitating radiation belt electrons and ring current ions associated with the plasmaspheric plume, J. Geophys. Res. Space Phys, 118, 4391-4399 (2013). https://doi.org/10.1002/jgra.50432   DOI
58 Zhu H, Su Z, Xiao F, Zheng H, Shen C, et al., Nonlinear interaction between ring current protons and electromagnetic ion cyclotron waves, J. Geophys. Res. Space Phys, 117, A12217 (2012). https://doi.org/10.1029/2012JA018088
59 Jordanova VK, Albert J, Miyoshi Y, Relativistic electron precipitation by EMIC waves from self-consistent global simulations, J. Geophys. Res. Space Phys. 113, A00a10 (2008). https://doi.org/10.1029/2008JA013239
60 Inan US, Bell TF, Helliwell RA, Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere, J. Geophys. Res. 83, 3235-3253 (1978).   DOI
61 Jordanova VK, Farrugia CJ, Thorne RM, Khazanov GV, Reeves GD, et al., Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14-16, 1997, storm, J. Geophys. Res. Space Phys. 106, 7-22 (2001). https://doi.org/10.1029/2000JA002008   DOI
62 Jordanova VK, Kozyra JU, Nagy AF, Khazanov GV, Kinetic model of the ring current-atmosphere interactions, J. Geophys. Res. Space Phys. 102, 14279-14291 (1997). https://doi.org/10.1029/96JA03699   DOI
63 Jordanova VK, Miyoshi Y, Relativistic model of ring current and radiation belt ions and electrons: Initial results, Geophys. Res. Lett. 32, L14104 (2005). https://doi.org/10.1029/2005GL023020   DOI
64 Kang SB, Fok MC, Glocer A, Min KW, Choi CR, et al., Simulation of a rapid dropout event for highly relativistic electrons with the RBE model, J. Geophys. Res. Space Phys. 121, 4092-4102 (2016). https://doi.org/10.1002/2015JA021966   DOI
65 Kang SB, Min KW, Fok MC, Hwang J, Choi CR, Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model, J. Geophys. Res. Space Phys. 120, 8529-8546 (2015). https://doi.org/10.1002/2014JA020644   DOI
66 Kennel CF, Consequences of a magnetospheric plasma, Rev. Geophys. 7, 379-419 (1969). https://doi.org/10.1029/RG007i001p00379   DOI
67 Kubota Y, Omura Y, Rapid precipitation of radiation belt electrons induced by EMIC rising tone emissions localized in longitude inside and outside the plasmapause, J. Geophys. Res. Space Phys. 122, 293-309 (2016), https://doi.org/10.1002/2016JA023267   DOI
68 Kennel CF, Engelmann F, Velocity space diffusion from weak plasma turbulence in a magnetic field, Phys. Fluids. 9, 2377-2388 (1966). https://doi.org/10.1063/1.1761629   DOI
69 Kennel CF, Petschek HE, Limit on stably trapped particle fluxes, J. Geophys. Res. 71, 1-28 (1966). https://doi.org/10.1029/JZ071i001p00001   DOI
70 Kersten T, Horne RB, Glauert SA, Meredith NP, Fraser BJ, et al., Electron losses from the radiation belts caused by EMIC waves, J. Geophys. Res. Space Phys. 119, 8820-8837 (2014), https://doi.org/10.1002/2014JA020366   DOI
71 Kubota Y, Omura Y, Summers D, Relativistic electron precipitation induced by EMIC-triggered emissions in a dipole magnetosphere, J. Geophys. Res. Space Phys. 120, 4384-4399 (2015), https://doi.org/10.1002/2015JA021017   DOI
72 Kurita S, Miyoshi Y, Shiokawa K, Higashio N, Mitani T, et al., Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations. Geophys. Res. Lett. 45, 720-729 (2018). https://doi.org/10.1029/ 2018GL080262
73 Lee DY, Noh SJ, Choi CR, Lee JJ, Hwang JA, Effect of hot anisotropic $He^+$ ions on the growth and damping of electromagnetic ion cyclotron waves in the inner magnetosphere, J. Geophys. Res. 112, 4935-4942 (2017). https://doi.org/10.1002/2016JA023826
74 Liu K, Winske D, Gary SP, Reeves GD, Relativistic electron scattering by large amplitude electromagnetic ion cyclotron waves: The role of phase bunching and trapping, J. Geophys. Res. Space Phys. 117, A06218 (2012). https://doi.org/10.1029/2011JA017476
75 Lee DY, Shin DK, Choi CR, Effects of oblique wave normal angle and noncircular polarization of electromagnetic ion cyclotron waves on the pitch angle scattering of relativistic electrons, J. Geophys. Res. 123, 4556-4573 (2018). https://doi.org:10.1029/2018JA025342   DOI
76 Lemons DS, Liu K, Winske D, Gary SP. Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves, Phys. Plasmas. 16, 112306 (2009). https://doi.org/10.1063/1.3264738   DOI
77 Li X, Tao X, Lu Q, Dai L, Bounce resonance diffusion coefficients for spatially confined waves, Geophys. Res. Lett. 42, 9591-9599 (2015). https://doi.org/10.1002/2015GL066324   DOI
78 Li Z, Millan RM, Hudson MK, Woodger LA, Smith DM, et al., Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett. 41, 8722-8729 (2014). https://doi.org/10.1002/2014GL062273   DOI
79 Liu K, Lemons DS, Winske D, Gary SP, Relativistic electron scattering by electromagnetic ion cyclotron fluctuations: Test particle simulations, J. Geophys. Res. Space Phys. 115, A04204, (2010). https://doi.org/10.1029/2009JA014807
80 Lorentzen KR, McCarthy MP, Parks GK, Foat JE, Millan RM, et al., Precipitation of relativistic electrons by interaction with electromagnetic ion cyclotron waves, J. Geophys. Res. Space Phys. 105, 5381-5389 (2000). https://doi.org/10.1029/1999JA000283   DOI
81 Lyons LR, General relations for resonant particle diffusion in pitch angle and energy, J. Plasma Phys. 12, 45-49 (1974a). https://doi.org/10.1017/S0022377800024910   DOI
82 Meredith NP, Thorne RM, Horne RB, Summers D, Fraser BJ, et al., Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES, J. Geophys. Res. 108, 1250 (2003). https://doi.org/10.1029/2002JA009700   DOI
83 Lyons LR, Pitch angle and energy diffusion coefficients from resonant interactions with ion-cyclotron and whistler waves, J. Plasma Phys. 12, 417-432 (1974b). https://doi.org/10.1017/S002237780002537X   DOI
84 Li W, Shprits YY, Thorne RM, Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms, J. Geophys. Res. Space Phys. 112, A10220 (2007). https://doi.org/10.1029/2007JA012368
85 Lyons LR, Thorne RM, Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves, J. Geophys. Res. 77, 5608-5616 (1972). https://doi.org/10.1029/JA077i028p05608   DOI
86 Lyons LR, Thorne RM, Kennel CF, Pitch-angle diffusion of radiation belt electrons within the plasmasphere, J. Geophys. Res. 77, 3455-3474 (1972). https://doi.org/10.1029/JA077i019p03455   DOI
87 Meredith NP, Horne RB, Glauert SA, Thorne RM, Summers D, et al., Energetic outer zone electron loss timescales during low geomagnetic activity, J. Geophys. Res. 111, A05212 (2006). https://doi.org/10.1029/2005JA011516   DOI
88 Min K, Lee J, Keika K, Li W, Global distribution of EMIC waves derived from THEMIS observations, J. Geophys. Res. 117, A05219 (2012). https://doi.org/10.1029/2012JA017515
89 Miyoshi Y, Sakaguchi K, Shiokawa K, Evans D, Albert D, et al., Precipitation of radiation belt electrons by EMIC waves, observed from ground and space, Geophys. Res. Lett. 35, L23101 (2008). https://doi.org/10.1029/2008GL035727   DOI