• Title/Summary/Keyword: Time Scales

Search Result 850, Processing Time 0.026 seconds

High-efficiency development of herbicide-resistant transgenic lilies via an Agrobacterium-mediated transformation system (고효율의 아그로박테리움 형질전환법을 이용한 제초제저항성 나리 식물체 개발)

  • Jong Bo Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.56-62
    • /
    • 2023
  • Transgenic lilies have been obtained using Agrobacterium tumefaciens (AGL1) with the plant scale explants, followed by DL-phosphinothricin (PPT) selection. In this study, scales of lily plants cv. "red flame" were transformed with the pCAMBIA3301 vector containing the gus gene as a reporter and the blpR gene as a selectable marker, as well as a gene of interest showing herbicide tolerance, both driven by the CaMV 35S promoter. Using a 20-minute infection time and a 5-day cultivation period, factors that optimized and demonstrated a high transformation efficiency were achieved. With these conditions, approximately 22-27% efficiency was observed for Agrobacterium-mediated transformation in lilies. After transformation with Agrobacterium, scales of lilies were transferred to MS medium without selective agents for 2 weeks. They were then placed on selection MS medium containing 5 mg/L PPT for a month of further selection and then cultured for another 4-8 weeks with a 4-week subculture regime on the same selection medium. PPT-resistant scales with shoots were successfully rooted and regenerated into plantlets after transferring into hormone-free MS medium. Also, most survived putatively transformed plantlets indicated the presence of the blpR gene by PCR analysis and showed a blue color indicating expression of the gus gene. In conclusion, when 100 scales of lily cv. "red flame" are transformed with Agrobacterium, approximately 22-27 transgenic plantlets can be produced following an optimized protocol. Therefore, this protocol can contribute to the lily breeding program in the future.

Reconstruction of gusty wind speed time series from autonomous data logger records

  • Amezcua, Javier;Munoz, Raul;Probst, Oliver
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.337-357
    • /
    • 2011
  • The collection of wind speed time series by means of digital data loggers occurs in many domains, including civil engineering, environmental sciences and wind turbine technology. Since averaging intervals are often significantly larger than typical system time scales, the information lost has to be recovered in order to reconstruct the true dynamics of the system. In the present work we present a simple algorithm capable of generating a real-time wind speed time series from data logger records containing the average, maximum, and minimum values of the wind speed in a fixed interval, as well as the standard deviation. The signal is generated from a generalized random Fourier series. The spectrum can be matched to any desired theoretical or measured frequency distribution. Extreme values are specified through a postprocessing step based on the concept of constrained simulation. Applications of the algorithm to 10-min wind speed records logged at a test site at 60 m height above the ground show that the recorded 10-min values can be reproduced by the simulated time series to a high degree of accuracy.

Impact of Adjuvant Chemoradiotherapy for Rectal Cancer on the Long-Term Quality of Life and Late Side Effects: A Multicentric Clinical Evaluation by the Turkish Oncology Group

  • Kilic, Diclehan;Yalman, Deniz;Aksu, Gorkem;Atasoy, Beste M.;Igdem, Sefik;Dincbas, Fazilet O.;Yalcin, Suayib
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5741-5746
    • /
    • 2012
  • Aim: Although preoperative chemoradiatherapy (CRT) has proven its benefits in terms of decreased toxicity, there is still a considerable amount of cases that do not receive postoperative CRT. Oncologists at different geographic locations still need to know the long-term effects of this treatment in order to manage patients successfully. The current paper reports on long-term quality of life (QOL) and late side effects after adjuvant CRT in rectal cancer patients from 5 centers in Anatolia. Methods: Rectal cancer patients treated with postoperative CRT with minimum 1-year follow-up and were in complete remission, were evaluated according to RTOG and LENT-SOMA scales. They were also asked to complete Turkish version of EORTC QLQ-C30 questionnaire and the CR-38 module. Each center participated with the required clinical data. Results: Two hundred and thirty patients with median age of 55 years participated and completed the study. Median follow-up time was 5 years. All patients received RT concomitant with chemotherapy. Common parameters that both increased functional health scales and yielded better symptom scores were long term interval after treatment and sphincter-saving surgery. In addition, surgery type and follow-up time were determined to be predictors of QOL scores and late toxicity grade. Conclusion: Postoperative CRT was found to have a great impact on the long term QOL and side effects in rectal cancer survivors. The factors that adversely affect these are abdominoperineal resection and shorter interval. The findings may encourage life-long follow-up and cooperation with patients, which should be mentioned during the initial counseling.

Sensitivity Assessment of Meteorological Drought Index using Bayesian Network (베이지안 네트워크를 이용한 기상학적 가뭄지수의 민감도 평가)

  • Yoo, Ji-Young;Kim, Jin-Young;Kwon, Hyun-Han;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1787-1796
    • /
    • 2014
  • The main purpose of this study is to assess the sensitivity of meteorological drought indices in probabilistic perspective using Bayesian Network model. In other words, this study analyzed interrelationships between various drought indices and investigated the order of the incident. In this study, a Bayesian Network model was developed to evaluate meteorological drought characteristics by employing the percent of normal precipitation (PN) and Standardized Precipitation Index (SPI) with various time scales such as 30, 60, and 90 days. The sensitivity analysis was also performed for posterior probability of drought indices with various time scales. As a result, this study found out interdependent relationships among various drought indices and proposed the effective application method of SPI to drought monitoring.

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

A Prospective, Randomized and Controlled Study for the Efficacy and Safety of Sedation Technique for Implant Surgery by Combining Nitrous Oxide and Intravenous Midazolam (임플란트 수술을 위한 미다졸람 정주와 아산화질소 흡입 병용 진정법의 효과와 안전성에 대한 전향적 무작위 대조군 연구)

  • Jeon, Seung-Hwan;Chung, Shin-Hye;Kim, Kwang-Soo;Jun, Sang-Ho;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.12 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • Background: The purpose of this study is to investigate the efficacy and safety of the sedation technique for implant surgery by combining the use of inhalation of nitrous oxide/oxygen with intravenous midazolam. Methods: Patients requiring surgery for the placement of dental implants were randomly allocated to two groups receiving intravenous midazolam or a combined technique using nitrous oxide/oxide and intravenous midazolam. Safety parameters, cooperation scores, anxiety scales, total amount of midazolam administered and recovery time were recorded and compared. Results: There were a statistically significant reduction in the amount of midazolam required to achieve optimal sedation (P<0.01), an overall significant reduction in recovery time (P<0.01), a significant reduction in anxiety scales (P<0.05), and a significant improvement in cooperation (P<0.05) and peripheral oxygen saturation (P<0.05) when a combined technique of inhalational $N_2O/O_2$ and midazolam was used. Conclusions: For implant surgery, this combining sedation technique could be safe and reliable, demonstrating reduction of total dose of midazolam and level of patient's anxiety and improvement in patient's recovery and cooperation.

A drought assessment using the generalized complementary principle of evapotranspiration (증발산 상호보완이론을 이용한 가뭄해석)

  • Chun, Jong Ahn;Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.325-335
    • /
    • 2019
  • To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the Noah land surface model (LSM). In this study, the evapotranspiration (ET) deficit defined as the difference between the wet-environment ET ($ET_w$) and $ET_a$ was then normalized to calculate the Standardized Evapotranspiration Deficit Index (SEDI) across the CONUS for the years 1895-2016. The SEDI was compared to the Standard Precipitation Index (SPI) at various time scales. The results showed that the GCR $ET_a$ was slightly higher than the Noah LSM-simualted $ET_a$. As time scales increased, the correlation between the SEDI and the SPI was higher. This study suggests that the GCR has promise as a tool in the estimation of $ET_a$ and SEDI can be useful for the drought characterization.

A study on evaluator factors affecting physician-patient interaction scores in clinical performance examinations: a single medical school experience

  • Park, Young Soon;Chun, Kyung Hee;Lee, Kyeong Soo;Lee, Young Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.2
    • /
    • pp.118-126
    • /
    • 2021
  • Background: This study is an analysis of evaluator factors affecting physician-patient interaction (PPI) scores in clinical performance examination (CPX). The purpose of this study was to investigate possible ways to increase the reliability of the CPX evaluation. Methods: The six-item Yeungnam University Scale (YUS), four-item analytic global rating scale (AGRS), and one-item holistic rating scale (HRS) were used to evaluate student performance in PPI. A total of 72 fourth-year students from Yeungnam University College of Medicine in Korea participated in the evaluation with 32 faculty and 16 standardized patient (SP) raters. The study then examined the differences in scores between types of scale, raters (SP vs. faculty), faculty specialty, evaluation experience, and level of fatigue as time passes. Results: There were significant differences between faculty and SP scores in all three scales and a significant correlation among raters' scores. Scores given by raters on items related to their specialty were lower than those given by raters on items out of their specialty. On the YUS and AGRS, there were significant differences based on the faculty's evaluation experience; scores by raters who had three to ten previous evaluation experiences were lower than others' scores. There were also significant differences among SP raters on all scales. The correlation between the YUS and AGRS/HRS declined significantly according to the length of evaluation time. Conclusion: In CPX, PPI score reliability was found to be significantly affected by the evaluator factors as well as the type of scale.

Interferometric Monitoring of Gamma-ray Bright AGNs:Measuring the Magnetic Field Strength of 4C+29.45

  • Kang, Sincheol;Lee, Sang-Sung;Hodgson, Jeffrey;Algaba, Juan-Carlos;Lee, Jee Won;Kim, Jae-Young;Park, Jongho;Kino, Motoki;Kim, Daewon;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2021
  • We present the results of multi-epoch, multi-frequency monitoring of a blazar 4C +29.45, which was regularly monitored as part of the Interferometric Monitoring of GAmma-ray Bright AGNs program - a key science program of the Korean Very long baseline interferometry Network (KVN). Observations were conducted simultaneously at 22, 43, 86 and 129 GHz during the 4 years from December 2012 to December 2016. We also used additional data from the 15 GHz Owens Valley Radio Observatory (OVRO) monitoring program. From the 15 GHz light curve, we estimated the variability time scales of the source during several radio flux enhancements. We found that the source experiencesd 6 radio flux enhancements with variability time scales of 9-187 days during the observing period, yielding corresponding variability Doppler factors of 9-27. From the multi-frequency simultaneous KVN observations, we were able to obtain accurate radio spectra of the source and hence to more precisely measure the turnover frequencies 𝜈r of synchrotron self-absorbed (SSA) emission with a mean value of ${\bar{\nu}_r}=28.9GHz$. Using jet geometry assumptions, we estimated the size of the emitting region at the turnover frequency. Taking into account these results, we found that the equipartition magnetic field strength is up to two orders of magnitudes higher than the SSA magnetic field strength (0.6-99 mG). This is consistent with the source being particle dominated.

  • PDF

Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring (식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교)

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1209-1219
    • /
    • 2019
  • For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.