Browse > Article
http://dx.doi.org/10.3741/JKWRA.2019.52.5.325

A drought assessment using the generalized complementary principle of evapotranspiration  

Chun, Jong Ahn (Climate Services and Research Department, APEC Climate Center)
Kim, Daeha (Climate Services and Research Department, APEC Climate Center)
Publication Information
Journal of Korea Water Resources Association / v.52, no.5, 2019 , pp. 325-335 More about this Journal
Abstract
To characterize historical droughts in the conterminous United States (CONUS), we estimated the actual evapotranspiration ($ET_a$) in the CONUS using the generalized complementary relationship (GCR) for 1895-2016. The $ET_a$ estimates were compared against simulations from the Noah land surface model (LSM). In this study, the evapotranspiration (ET) deficit defined as the difference between the wet-environment ET ($ET_w$) and $ET_a$ was then normalized to calculate the Standardized Evapotranspiration Deficit Index (SEDI) across the CONUS for the years 1895-2016. The SEDI was compared to the Standard Precipitation Index (SPI) at various time scales. The results showed that the GCR $ET_a$ was slightly higher than the Noah LSM-simualted $ET_a$. As time scales increased, the correlation between the SEDI and the SPI was higher. This study suggests that the GCR has promise as a tool in the estimation of $ET_a$ and SEDI can be useful for the drought characterization.
Keywords
Generalized complementary relationship; Evapotranspiration; Drought; SEDI;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Strzepek, K., Yohe, G., Neumann, J., and Boehlert, B. (2010). "Characterizing changes in drought risk for the United States from climate change." Environmental Research Letters, Vol. 5, 044012, pp. 1-9.   DOI
2 Szilagyi, J. (2018). "Anthropogenic hydrological cycle disturbance at a regional scale: State-wide evapotranspiration trends (1979-2015) across Nebraska, USA." Journal of Hydrology, Vol. 557, pp. 600-612.   DOI
3 Szilagyi, J., Crago, R., and Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology." Journal of Geophysical Research: Atmospheres, Vol. 122, No. 1, pp. 264-278.   DOI
4 Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate." Geographical Review, Vol. 38, No. 1, pp. 55-94.   DOI
5 Trenberth, K. E., Branstator, G. W., and Arkin, P. A. (1988). "Origins of the 1988 North American Drought." Science, Vol. 242, No. 4886, pp. 1640-1645.   DOI
6 Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K.R., and Sheffield., J. (2014). "Global warming and changes in drought." Nature Climate Change, Vol. 4, pp. 17-22.   DOI
7 van der Ent, R. J., and Tuinenburg, O. A. (2017). "The residence time of water in the atmosphere revisited." Hydrology and Earth System Sciences, Vol. 21, pp. 779-790.   DOI
8 Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I. (2010). "A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index (SPEI)." Journal of Climate, Vol. 23, pp. 1696-1718.   DOI
9 Hobbins, M. T., Wood, A., McEvoy, D. J., Huntington, J. L., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index: Part I-Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, pp. 1745-1761.   DOI
10 Kahler, D. M., and Brutsaert, W. (2006). "Complementary relationship between daily evaporation in the environment and pan evaporation." Water Resources Research, Vol. 42, pp. W05413.
11 Kangas, R. S., and Brown, T. J. (2007). "Characteristics of US drought and pluvials from a high-resolution spatial dataset." International Journal of Climatology, Vol. 27, No. 10, pp. 1303-1325.   DOI
12 Kim, D., and Rhee, J. (2016). "A drought index based on actual evapotranspiration from the Bouchet hypothesis." Geophysical Research Letters, Vol. 43, No. 19, pp. 10277-10285.   DOI
13 Koster, R. D., and Suarez, M. J. (1996). Energy and water balance calculations in the mosaic LSM. NASA Technical Memorandum, NASA TM-104606, 9, 60, Goddard Space Flight Cent, Greenbelt, MD.
14 Abatzoglou, J. (2018). GRIDMET Datasets, accessed 15 February 2018, .
15 Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome.
16 World Meteorological Organization (WMO) (1992). International meteorological vocabulary. WMO No.182, 2nd ed., pp. 784.
17 Anderson, M. C., Hain, C., Wardlow, B., Pimstein, A., Mecikalski, J. R., and Kustas, W. P. (2011). "Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the conterminous United States." Journal of Climate, Vol. 24, No. 8, pp. 2025-2044.   DOI
18 Vicente-Serrano, S. M., Miralles, D. G., Domínguez-Castro, F., Azorin-Molina, C., Kenawy, A. E., McVicar, T. R., Tomás-Burguera, M., Beguería, S., Maneta, M., and Peña-Gallardo, M. (2018). "Global assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for drought analysis and monitoring." Journal of Climate, Vol. 31, pp. 5371-5393.   DOI
19 Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. in D. A. Wilhite, Ed., Drought: A global assessment. Natural Hazards and Disasters Series. Routledge Publishers, U.K.
20 Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T., (2004). "Regions of strong coupling between soil moisture and precipitation." Science, Vol. 5687, No. 10, pp. 1138-1140.
21 Koster, R. D., Guo, Z., Dirmeyer, P. A., Bonan, G., Chan, E., Cox, P., Davies, H., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Hsuan Lu, C., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part I: Overview." Journal of Hydrometeorology, Vol. 7, pp. 590-610.   DOI
22 Bouchet, R. J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142.
23 Lhomme, J.-P. (1997). "A theoretical basis for the Priestley-Taylor coefficient." Boundary-Layer Meteorology, Vol. 82, pp. 179-191.   DOI
24 Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for GCMs." Journal of Geophysical Research, Vol. 99, No. D7, pp. 14415-14428.   DOI
25 Begueria, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B. (2014). "Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring." International Journal of Climatology, Vol. 34, pp. 3001-3023.   DOI
26 Brutsaert, W. (2015). "A generalized complementary principle with physical constraints for land-surface evaporation." Water Resources Research, Vol. 51, No. 10, pp. 8087-8093.   DOI
27 Burnash, R. J. C. (1995). The NWS river forecast system-catchment modeling. in Computer Models of Watershed Hydrology, edited by V. P. Singh, Water Resources Publications, Littleton, Colo., pp. 311-366.
28 Cammalleri, C., Micale, F., and Vogt, J. (2016). "A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency." Hydrological Processes, Vol. 30, No. 2, pp. 289-301, doi: 10.1002/hyp.10578.   DOI
29 Changnon, S. A., Kunkel, K. E., and Changnon, D. (2007). Impacts of recent climate climate anomalies. edited by Losers and Winners, Illinois State Water Survey, Illinois Department of Natural Resources and University of Illinois at Urbana-Champaign, Champaign, Illinois.
30 Chun, J. A., Baik, J., Kim, D., and Choi, M. (2018). "A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates." Ecological Engineering, Vol. 122, pp. 1-9.   DOI
31 Crago, R., Szilagyi, J., Qualls, R., and Huntington, J. (2016). "Rescaling the complementary relationship for land surface evaporation." Water Resources Research, Vol. 52, No. 11, pp. 8461-8471.   DOI
32 Dai, A. (2010). "Drought under global warming: a review." Wiley Interdisciplinary Reviews: Climate Change, Vol. 2, No. 1, pp. 45-65.   DOI
33 National Aeronautics and Space Administration (NASA) (2018). LDAS (Land Data Assimilation System), accessed 10 August 2018, .
34 McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C., Anderson, M., and Hain, C. (2016). "The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators." Journal of Hydrometeorology, Vol. 17, pp. 1763-1779.   DOI
35 McKee, T. B. N., Doesken, J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." In Proceedings of Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA., pp. 179-184.
36 Monteith, J. L. (1965). "Evaporation and the environment." 19th Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
37 Palmer, W. C. (1965). Meteorological drought. U.S. Weather Bureau, Research Paper 45, pp. 65.
38 Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society London A, Vol. 194, No. S, pp. 120-145.
39 PRISM Climate Group (2018). Northwest Alliance for Computational Science and Engineering. PRISM Climate Data, accessed 15 February 2018, .
40 Priestley, C. H., and Taylor, R. J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92.   DOI
41 Sheffield, J., and Wood, E. F. (2008). "Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations." Climate Dynamics, Vol. 31, No. 1, pp. 79-105.   DOI
42 Dai, A. (2013). "Increasing drought under global warming in observations and models." Nature Climate Change, Vol. 3, pp. 52-58, doi:10.1038/nclimate1633.   DOI
43 Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko, D. (2012). "Continentalscale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2(NLDAS-2): 1. Intercomparison and application of model products." Journal of Geophysical Research, Vol. 117, No. D3, D03109.
44 Steduto, P., Hsiao, T. C., Fereres, E., and Raes, D. (2012). Crop Yield Response to Water. FAO Irrigation and Drainage Paper No. 66, Food and Agriculture Organization of the United Nations, Rome.
45 Yu, M., Cho, Y., Kim, T.-W., and Chae, H.-S. (2018). "Analysis of drought propagationusing hydrometeorological data: from meteorological drought oto agricultual drought." Journal Korea Water Resources Association, Vol. 51, No. 3, pp. 195-205(in Korean with English abstract).   DOI
46 Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). "Little change in global drought over the past 60 years." Nature, Vol. 491, pp. 435-438.   DOI
47 Sridhar, V., and Nayak, A. (2010). "Implications of climate-driven variability and trends for the hydrologic assessment of the Reynolds Creek Experimental Watershed, Idaho." Journal of Hydrology, Vol. 385, No. 1-4, pp.183-202. https://doi.org/10.1016/j.jhydrol.2010.02.020.   DOI
48 Ek, M. B., Mitchell, K. E., Lin, Y., Rodgers, E., Grunman, P., Koren, V., Gayno, G., and Tarpley, J. D. (2003). "Implementation of noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model." Journal of Geophysical Research, Vol. 108, No. D22, pp. 8851.
49 Folger, P., and Cody, B. A. (2014). Drought in the United States: Causes and current understanding. Congressional Research Service, Report 7-5700, R43407. Available at http://www.crs.gov.
50 Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P. (2010). "Estimating the water budget of major U.S. river basins via remote sensing." International Journal of Remote Sensing, Vol. 31, No. 14, pp. 3955-3978.   DOI
51 Dracup, J. A., Lee, K. S., and Paulson Jr., E. G. (1980). "On the definitions of droughts." Water Resources Research, Vol. 16 No. 2, pp. 297-302.   DOI
52 Guo, Z., Dirmeyer, P. A., Koster, R. D., Bonan, G., Chan, E., Cox, P., Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., Mcavaney, B., Mcgregor, J. L., Mitchell, K., Mocko, D., Oki, T., Oleson, K. W., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T. (2006). "GLACE: The global land-atmosphere coupling experiment. Part II: Analysis." Journal of Hydrometeorology, Vol. 7, pp. 611-625.   DOI
53 Han, S., and Tian, F. (2018). "Derivation of a sigmoid generalized complementary function for evaporation with physical constraints." Water Resources Research, Vol. 54, No. 7, pp. 5050-5068.   DOI
54 Heim, R. R., Jr. (2002). "A review of twentieth-century drought indices used in the United States." Bulletin of the American Meteorological Society, Vol. 83, pp. 1149-1165.   DOI
55 Dai, A. (2011). "Characteristics and trends in various forms of the palmer drought severity index during 1900-2008." Journal of Geophysical Research, Vol. 116, D12115, doi:10.1029/2010JD015541.   DOI
56 Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.