• Title/Summary/Keyword: Time Integration

Search Result 2,787, Processing Time 0.025 seconds

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Bang, In-Chang;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.629-634
    • /
    • 2000
  • Dynamic behavior of an automatic dynamic balancer is analyzed by a theoretical approach. Using Lagrange's equation, we derive the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility with respect to the rectangular coordinate. Considering the rotor bending flexibility we analyze out-of-plane vibrations as well as in-plane vibrations of the automatic dynamic balaner. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of rotor flexibility on the behavior of the automatic dynamic balancer

  • PDF

Energy Detector based Time of Arrival Estimation using a Neural Network with Millimeter Wave Signals

  • Liang, Xiaolin;Zhang, Hao;Gulliver, T. Aaron
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3050-3065
    • /
    • 2016
  • Neural networks (NNs) are extensively used in applications requiring signal classification and regression analysis. In this paper, a NN based threshold selection algorithm for 60 GHz millimeter wave (MMW) time of arrival (TOA) estimation using an energy detector (ED) is proposed which is based on the skewness, kurtosis, and curl of the received energy block values. The best normalized threshold for a given signal-to-noise ratio (SNR) is determined, and the influence of the integration period and channel on the performance is investigated. Results are presented which show that the proposed NN based algorithm provides superior precision and better robustness than other ED based algorithms over a wide range of SNR values. Further, it is independent of the integration period and channel model.

Internal resonance and nonlinear response of an axially moving beam: two numerical techniques

  • Ghayesh, Mergen H.;Amabili, Marco
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.235-245
    • /
    • 2012
  • The nonlinear resonant response of an axially moving beam is investigated in this paper via two different numerical techniques: the pseudo-arclength continuation technique and direct time integration. In particular, the response is examined for the system in the neighborhood of a three-to-one internal resonance between the first two modes as well as for the case where it is not. The equation of motion is reduced into a set of nonlinear ordinary differential equation via the Galerkin technique. This set is solved using the pseudo-arclength continuation technique and the results are confirmed through use of direct time integration. Vibration characteristics of the system are presented in the form of frequency-response curves, time histories, phase-plane diagrams, and fast Fourier transforms (FFTs).

A Resistance Deviation-To-Time Interval Converter Based On Dual-Slope Integration

  • Shang, Zhi-Heng;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2015
  • A resistance deviation-to-time interval converter based on dual-slope integration using second generation current conveyors (CCIIs) is designed for connecting resistive bridge sensors with a digital system. It consists of a differential integrator using CCIIs, a voltage comparator, and a digital control logic for controlling four analog switches. Experimental results exhibit that a conversion sensitivity amounts to $15.56{\mu}s/{\Omega}$ over the resistance deviation range of $0-200{\Omega}$ and its linearity error is less than ${\pm}0.02%$. Its temperature stability is less than $220ppm/^{\circ}C$ in the temperature range of $-25-85^{\circ}C$. Power dissipation of the converter is 60.2 mW.

Flood Submerged Area Mapping Using the Integration of SAR /TM Images

  • Xinglian, Qiu;Jincun, zhang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.287-290
    • /
    • 2002
  • Real-time flood submerged area map provides important scientific basis for the decision-making of flood control and relieving disaster. Taking the Wuhan area as an example, this article gives out a image interpretation method under influence of flood, and describes real-time or quasi-real-time flood submerged area map by using the integration of ERS-2 SAR image and LANDSAT TM image in support of remote sensing images process software ERDAS.

  • PDF

Neighboring Optimal Control using Pseudospectral Legendre Method (Pseudospectral Legendre법을 이용한 근접 최적 제어)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • The solutions of neighboring optimal control are typically obtained using the sweep method or transition matrices. Due to the numerical integration, however, the gain matrix can become infinite as time go to final one in the transition matrices, and the Riccati solution can become infinite when the final time free. To overcome these disadvantages, this paper proposes the pseudospectral Legendre method which is to first discreteize the linear boundary value problem using the global orthogonal polynomial, then transforms into an algebraic equations. Because this method is not necessary to take any integration of transition matrix or Riccati equation, it can be usefully used in real-time operation. Finally, its performance is verified by the numerical example for the space vehicle's orbit transfer.

Vibration Analysis of an Automatic Ball Balancer (자동 볼 평형장치의 진동 해석)

  • 박준민;노대성;정진태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

The Effect of Sensory Diet Based on Proprioception on the Toddler's Sleep Pattern : Single Subject Research (고유감각을 기초로 한 감각식이가 유아의 수면 패턴에 미치는 효과: 단일사례연구)

  • Jung, Hye-Rim;Rho, Guem-Mi;Kim, Kyeong-Mi
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.10 no.2
    • /
    • pp.23-32
    • /
    • 2012
  • Objective : The aim of the present single subject research was to identify the effect of sensory diet based on proprioception on toddler's sleep pattern and the continuance of the effect. Methods : The sensory diet based on proprioception consisted of 14 session was provided to a 13 months old girl for 2 weeks. The time taken to fall asleep, amount of sleep, bed time and severity of behavior before sleep were recorded by her mother who was taken the education about observation. Results : After the sensory diet, the child present change of time taken to fall asleep, amount of sleep, bed time and severity of behavior before sleep, and the effect on time taken to fall asleep, continued temporally. Conclusion : The sensory diet based on proprioception was related to stabilize the sleep pattern of a toddler, and the effect of the sensory diet continued temporally after the sensory diet. For future research, more subjects and methodical measure are need to generalize the result of sensory diet based on proprioception affecting to toddler's sleep pattern.

  • PDF

A Study of Fusing Scheme of Image and Sensing Data Using Index Method (인덱스를 이용한 동영상과 센싱 데이터 융합 방안 연구)

  • Hyun, Jin Gyu;Lee, Young Su;Kim, Do Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.141-146
    • /
    • 2008
  • Recently, it is studying to provide to users through internet in the SensorWeb of OGC(Open Geospatial Consortium) saving and maintaining data and image information gathered from sensor network. It is necessary to study about data convergence as binding audio and video for delivering the sensing data and image information to users with real-time system. In this article, it suggests how to convergence sensing data and moving picture collected from the sensor network using index. This program indicates both of them that collected sensing data and information identified of moving picture in the integration index and based on this program provides sensing data moving picture at the same time referencing integration index, if the user asks. To verify suggested method designing real-time multimedia service structure using sensor network and image installation and implementing Ubiquitous realtime multimedia system integrating moving picture and sensing data based on index. As a result of this program, it is confirmed providing real-time multimedia service to request information of application service using integration index collected image and sensing data from wireless sensor network and image installation suggested data convergence method.

  • PDF

Implicit Large Eddy Simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method

  • Crivellini, Andrea;Nigro, Alessandra;Colombo, Alessandro;Ghidoni, Antonio;Noventa, Gianmaria;Cimarelli, Andrea;Corsini, Roberto
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • In this work the numerical results of the flow around a 5:1 rectangular cylinder at Reynolds numbers 3 000 and 40 000, zero angle of attack and smooth incoming flow condition are presented. Implicit Large Eddy Simulations (ILES) have been performed with a high-order accurate spatial scheme and an implicit high-order accurate time integration method. The spatial approximation is based on a discontinuous Galerkin (dG) method, while the time integration exploits a linearly-implicit Rosenbrock-type Runge-Kutta scheme. The aim of this work is to show the feasibility of high-fidelity flow simulations with a moderate number of DOFs and large time step sizes. Moreover, the effect of different parameters, i.e., dimension of the computational domain, mesh type, grid resolution, boundary conditions, time step size and polynomial approximation, on the results accuracy is investigated. Our best dG result at Re=3 000 perfectly agrees with a reference DNS obtained using Nek5000 and about 40 times more degrees of freedom. The Re=40 000 computations, which are strongly under-resolved, show a reasonable correspondence with the experimental data of Mannini et al. (2017) and the LES of Zhang and Xu (2020).