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Abstract 
 

Neural networks (NNs) are extensively used in applications requiring signal classification and 

regression analysis. In this paper, a NN based threshold selection algorithm for 60 GHz 

millimeter wave (MMW) time of arrival (TOA) estimation using an energy detector (ED) is 

proposed which is based on the skewness, kurtosis, and curl of the received energy block 

values. The best normalized threshold for a given signal-to-noise ratio (SNR) is determined, 

and the influence of the integration period and channel on the performance is investigated. 

Results are presented which show that the proposed NN based algorithm provides superior 

precision and better robustness than other ED based algorithms over a wide range of SNR 

values. Further, it is independent of the integration period and channel model. 
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1. Introduction 

The rapid developments and increasing demands of wireless telecommunication systems 

have motivated research from both academia and industry on 60 GHz millimeter wave 

(MMW) technology. These signals are well suited for many applications such as high 

definition television (HDTV) and 8 K digital cameras. The advantages include several GHz of 

unlicensed spectrum [1], precise time and multipath resolution [2], and robustness to 

interference [3][4]. As a consequence, 60 GHz MMW technology is preferred for future 

gigabit wireless networks [5][6] such as wireless body area networks [7], and this has 

motivated significant research on the 60 GHz frequency band [8]. This technology has 

tremendous potential for precise time of arrival (TOA) and range estimation applications, as 

current solutions based on ultra-wide band (UWB) signals provide poor performance. 

However, TOA estimation is still challenging because of complex signal environments due to 

multipath fading and interference. 

Many TOA estimation algorithms have been developed [9][10][11][12][13]. The majority 

of these algorithms employ either a coherent receiver such as a matched filter (MF), or a 

non-coherent receiver such as an energy detector (ED). A MF can provide excellent TOA 

estimation even in multipath environments. However, it requires accurate channel estimation, 

correlator synchronization, and a high sampling rate, so complexity is an issue. Thus, a MF is 

not practical in many applications, particularly when 60 GHz MMW signals are employed 

[14]. Conversely, an ED does not require accurate channel estimation and synchronization as 

only the signal energy is used. Further, a low sampling rate can be employed which reduces the 

complexity. Thus, an ED is employed here for TOA estimation. An ED consists of four 

components: a band-pass filter (BPF), a squaring operator, an integrator, and a decision device 

[14]. The integrator output is compared with a threshold, and the first energy block exceeding 

the threshold is used as the TOA estimation. 

The main challenge with TOA estimation using an ED is the choice of a suitable threshold. 

Many ED based threshold selection algorithms have been developed. A threshold selection 

algorithm for TOA estimation based on the skewness of the energy block values was proposed 

in [9]. In [10], a normalized threshold based on the kurtosis of these values was introduced. A 

normalized threshold based on the ratio of the minimum and maximum block energies was 

proposed in [11]. In [12], an algorithm for threshold selection was presented which is based on 

the skewness and maximum slope of the energy block values. However, there are several 

problems with these approaches. First, it is difficult to estimate the signal-to-noise ratio (SNR), 

which makes threshold determination challenging. Second, the resulting performance can be 

very poor when the SNR is low, i.e. less than 10 dB. Further, the integration period has a 

significant effect on performance, and the best period is typically a function of the SNR. In 

addition, the best algorithm given in [12] is applicable only to UWB systems, and may not 

provide acceptable performance in other systems. Thus obtaining accurate TOA estimates 

using an ED is problematic 

Neural networks (NNs) have been widely employed in statistical signal processing 

applications [15]. To improve the accuracy, the weights in different layers can be adapted 

automatically. Further, artificial neural networks (ANNs) can provide robust nonlinear 

approximations to complex relationships through self-learning and self-adaptation. 

Consequently, it is a very flexible mechanism for characterizing the relationship between 

inputs and outputs according to the training data. 
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Given the difficulties inherent in existing ED based TOA estimation algorithms, a 60 GHz 

NN based TOA estimation algorithm is introduced which employs the kurtosis, skewness, and 

curl of the energy block values. Regression problems can be solved using a back-propagation 

neural network (BPNN). Results are presented which show that the proposed NN based 

algorithm provides superior precision and better robustness for TOA estimation using 60 GHz 

MMW signals than other techniques over a wide range of SNR values, especially low SNRs. 

The remainder of this paper is organized as follows. The system model is presented in the 

next section. Section 3 considers the statistical characteristics of the received energy block 

values. A NN based threshold selection algorithm for TOA estimation is introduced in Section 

4, and some performance results are given in Section 5. Finally, some conclusions are 

provided in Section 6. 

2. System Model 

Typically, on-off keying, pulse amplitude modulation, or pulse position modulation (PPM) is 

used in UWB systems [16]. PPM is widely employed in multiple access and high-speed 

wireless communication systems [17] [18], as it is robust to interference [19] and has good 

spectral efficiency [20]. Several statistical channel models have been developed for 60 GHz 

signals such as those in the IEEE 802.15.3c and ECMA 387 standards. The IEEE 802.15.3c 

standard [21] was developed to support the transmission of data within a few meters at a 

minimum data rate of 2 Gbps. Both line of sight (LOS) and non-line of sight (NLOS) channel 

models are provided for indoor residential, indoor office, industrial, outdoor, and open outdoor 

environments [22][23].  

Several M-ary PPM signal waveforms have been proposed for 60 GHz MMW systems [24]. 

In this paper, the 60 GHz PPM signal is given by 

 

   s y c y

y

f t x t yT B T a 




                                                    (1) 

 

where y and 
sT  are the frame index and frame duration, respectively. The time-hopping codes 

are  0,1,...., 1y hB N  , where 
h s cN T T is the number of possible chip positions in a frame, 

and the chip duration is Tc. is the PPM time shift employed when =1ya , and there is no time 

shift when = 0ya . The pulse waveform is 
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where is the shape factor and 60.5cf   GHz. The corresponding received signal is 

 

       , ,r t f t h t n t                                                        (3) 

 

where  n t is additive white Gaussian noise (AWGN) with zero mean and two sided power 

spectral density N0/2, and  , ,h t   is the channel impulse response which can be expressed as 
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where    is the Dirac delta function, L is the number of clusters, and
lK  is the number of rays 

in the lth cluster. The scalars
, , ,, ,k l k l k l    and 

,k l  denote the complex amplitude, TOA, angle 

of arrival (AOA) and angle of departure (AOD) of the kth ray in the lth cluster, respectively. 

The average TOA, average AOA and average AOD of the lth cluster are denoted 

by ,l lT  and
l , respectively. With directional antennas, (4) can be expressed as 
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where  , ,t   accounts for the LOS component which can be modeled as 
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where 
dPL ,  ,

NLOSA ,
d , 

0 , h1 and h2 are the path loss of the first impulse response 

component, wavelength, NLOS attenuation, mean distance, reflection coefficient, and heights 

of the TX and RX antennas, respectively. Gt1, Gt2, Gr1, Gr2 are the gains of the TX antenna for 

paths 1 and 2, and gains of the RX antenna for paths 1 and 2, respectively.   

The received signal is first squared and the result integrated over a period Tb. The TOA 

estimate is then made by the decision device [14]. The duration of integration period is 3 2sT  

to account for the inter-frame leakage due to the multipath signals [10]. The sample indices 

from the start of the integration period are  1,...., bn N , where    3 2b s bN T T is the 

number of samples. The integrator output is then given by 
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where 
sN  is the number of pulses transmitted per data symbol. The mean and variance of z are 

2

0 =F   and 2 4

0 =2F   when the received signal is only noise, and 
2=e nF E    and 

2 4 2=2 4e nF E    when the received signal contains noise and the 60 GHz PPM signal, 

where
nE is the received energy for the nth block. The number of degrees of freedom 

is 2 1bF BT  where B is the signal bandwidth [10]. In this paper, 
sN  is set to 1. 

The TOA estimation is obtained by comparing the energy block values z[n] with a threshold. 

The first value to exceed the threshold   is given by 
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It is difficult to determine the threshold directly from the received energy block values, so a 

normalized threshold is employed which is given by 

 

        = max min +minnorm z n z n z n                               (10)  

 

The problem is then how to obtain norm . There are two approaches to determining a suitable 

value, fitting an equation to the energy block values or using a fixing threshold (FT). Clearly 

using a FT is the simplest approach. In [9], 
norm  was assumed to be an exponential function of 

the skewness for Tb = 1 ns and 4 ns. In [10], 
norm  was considered to be a double exponential 

function of the kurtosis for Tb = 4 ns, and a linear function for Tb = 1 ns. A simple normalized 

threshold based on the ratio of the minimum to maximum values in an energy block was 

employed in [11]. However, none of these methods can provide good performance over a wide 

range of SNRs, which limits the TOA estimation accuracy. This is primarily due to the 

difficulty in identifying the arrival of the first signal component. In this paper, the mean 

absolute error (MAE) of the TOA estimates is used to evaluate an algorithm which can be 

expressed as 

 

1

1 tN

i i

it

MAE t t
N 

                                                   (11) 

 

where
it and it are the ith actual TOA and estimated TOA, respectively, and

tN is the number of 

TOA estimates. 

3. Statistical Characteristics of the Signal Energy 

In this section, the skewness, kurtosis and curl of the received energy block values are 

presented. 

3.1 Skewness 

The skewness of the received energy block values is given by 

 

 
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3

3
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1

1

bN
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z nS z
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 

                                              (12) 

 

where z and   are the mean and standard deviation of the values, respectively. The skewness 

can be positive, negative, or even zero. When S < 0, the left tail is longer and the mass of the 

distribution is concentrated on the right. This distribution is said to be left-skewed, left-tailed, 

or skewed to the left. When S > 0, the right tail is longer and the mass of the distribution is 

concentrated on the left. This distribution is said to be right-skewed, right-tailed, or skewed to 

the right. When S = 0, the distribution is approximately Gaussian.  

 

http://link.springer.com/article/10.1186/1687-6180-2012-185/fulltext.html#CR6_272
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3.2 Kurtosis 

The kurtosis of the received energy block values is given by 
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1
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 
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where z and   are the mean and standard deviation of the values, respectively. The kurtosis 

can be positive, negative, or even zero. When K = 0, the distribution is Gaussian. When K < 0, 

the distribution is sub-Gaussian, which means the tails are shorter than those of a Gaussian 

distribution.  When K > 0, the distribution is super-Gaussian, which means the tails are longer 

than those of a Gaussian distribution. The kurtosis for a standard Gaussian distribution is three. 

For this reason, the kurtosis is often defined as K-3 (also denoted as excess kurtosis).   

3.3 Curl 

In vector calculus, the curl is an operator that describes the infinitesimal rotation of a vector 

field. It is usually defined with respect to a two or three dimensional vector. Here, the received 

values z[n],  1,2, , bn N  , are considered to be an 1bN dimensional array denoted as U. The 

MATLAB function curl (U, U) [25] is employed to compute the curl, and the maximum is 

used to estimate the TOA. The curl will increase with increasing SNR. 

3.4 Characteristics of the Statistical Parameters 

For SNRs in the range 4 to 32 dB, 1000 impulse responses using the CM1.1 (residential LOS) 

and CM2.1 (residential NLOS) channel models from the IEEE 802.15.3c standard were 

obtained. A sampling rate of fs = 9 GHz was employed. Fig. 1 and Fig. 2 present the kurtosis, 

skewness, and curl for an integration period of 4 ns. The frame duration is 200 ns and the chip 

duration is 1 ns. Every realization is uniformly distributed in the range 0 to Ts.  

 
Fig. 1. The normalized statistical parameters with respect to SNR over channel CM1.1 

 



3056                                                                                                 Liang et al.: Energy Detector based Time of Arrival Estimation 

using a Neural Network with Millimeter Wave Signals 

 

 
Fig. 2. The normalized statistical parameters with respect to SNR over channel CM2.1 

 

These figures also show the standard deviation (SD), the maximum slope (MS), the product 

of maximum slope and standard deviation (MSD), the ratio of curl to skewness (C/S), the ratio 

of kurtosis to skewness (K/S), the ratio of curl to standard deviation (C/SD), and the ratio of 

maximum slope to standard deviation (MS/SD). These results indicate that the statistical 

parameters with respect to SNR are similar for the LOS and NLOS channels. The skewness, 

kurtosis, C/SD, K/S and MS/SD are all monotonically increasing functions of SNR,  but K/S 

changes more quickly than the other parameters. Conversely, the maximum slope, standard 

deviation, curl and MSD are monotonically decreasing functions of SNR, but the curl 

decreases more quickly than the other parameters. Moreover, K/S increases slowly while the 

curl decreases quickly when SNR < 9 dB, while K/S increases quickly but the curl decreases 

slowly when SNR > 9 dB. These results show that no single parameter can be used to indicate 

the changes in SNR over a wide range of values. 

4. Energy Detector based TOA Estimation using a Neural Network 

In this section, a joint metric is proposed using the skewness, kurtosis and curl of the received 

energy block values. This metric provides a better indication of changes in the SNR than the 

statistical parameters considered in the previous section. A NN is used to determine the 

relationship between this metric and the threshold. 

4.1 Joint Metric 

The results in Section 3 show that no single statistical parameter can be used to indicate a wide 

range of SNR values. The MAE results presented in [9] were worse than those in [10] because 

the skewness can better reflect SNR variations than the kurtosis when SNR > 12 dB. Further, 

the MAE in [9] is larger than that in [12] when SNR < 12 dB. Consequently, none of these 
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techniques can provide good performance over a wide range of SNR values. To solve this 

problem, a joint metric using both K/S and C is employed which is given by 

 

 / 10 2J K S C                                                      (14) 

 

Table 1 shows that the standard deviation (SD) of the skewness, kurtosis and K/S increases 

with increasing SNR, but the former is less than the latter while the K/S values increase more 

rapidly. Conversely, the standard deviation of the curl and maximum slope decrease with 

increasing SNR, but the former is larger than the latter while the curl values decrease more 

rapidly. The rapid variations in the K/S and curl indicate that they are the best choices for a 

metric. 

 
Table 1. The standard deviation of several statistical parameters 

SNR 

(dB) 

Kurtosis Skewness K/S SD Maximum 

Slope 

Curl MS/SD 

4 0.82 0.30 19.5 0.35 7.05 49.0 32.3 

6 0.83 0.30 20.7 0.27 5.43 15.8 34.4 

8 0.87 0.31 22.2 0.22 4.37 7.08 34.1 

10 1.01 0.32 23.8 0.19 3.71 3.29 37.2 

12 1.36 0.37 25.8 0.16 3.16 2.19 43.1 

14 2.05 0.45 28.1 0.14 2.77 1.35 60.4 

16 3.03 0.55 30.8 0.12 2.48 0.94 69.5 

18 3.90 0.61 34.2 0.11 2.27 0.82 76.2 

20 4.45 0.63 38.4 0.10 2.11 0.95 76.8 

22 4.82 0.64 43.7 0.092 1.98 0.74 93.7 

24 5.11 0.63 50.8 0.086 1.89 0.68 88.2 

26 5.35 0.63 57.8 0.080 1.80 0.68 94.0 

28 5.55 0.62 59.2 0.075 1.73 0.63 101.5 

30 5.73 0.62 64.6 0.071 1.66 0.51 99.1 

32 5.88 0.62 66.0 0.068 1.61 0.68 100.6 

 

 
Fig. 3. Average value of J with respect to SNR 
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To confirm that J varies sufficiently over a wide range of SNRs, 1000 impulse responses 

were generated for each SNR in the range 4 to 32 dB using the channel models in the IEEE 

802.15.3c standard. The mean values of J are given in Fig. 3. These results show that J is a 

monotonically increasing function over the entire range of SNR values. Further, J is 

independent of the integration period and channel. 

4.2 Threshold Determination  

 
Fig. 4. The normalized threshold versus J 

 

In this section, the NN based threshold selection algorithm for TOA estimation is developed 

for the 60 GHz MMW system. The values of J are rounded to the integer or half integer. To 

find the best normalized threshold best  using J, the relationship of both the MAE and norm  

with respect to J, the channel and the integration period is examined. The results obtained 

indicate that the MAE decreases with increasing J and the minimum MAE is lower with 

increasing J [10]. Therefore, norm  with regard to the minimum MAE is referred to as best . 

These best normalized thresholds are shown in Fig. 4. The results obtained indicate that J 

and best are independent of the integration period and channel. Consequently, the average best , 

denoted as the optimal threshold, is given by 

 

     mean bT i ns

opt optJ J 


                                                 (15) 

 

where 

 

         1.1, 2.1,
mean b bb

CM T i ns CM T i nsT i ns

opt best bestJ J J  
    

 
                             (16) 

 

and i is the integration period in ns. To evaluate the performance of the proposed threshold 

selection algorithm, it is compared with several well-known ED based TOA algorithms. The 
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integration periods considered are 1 ns and 4 ns, so the optimal threshold value is set to 

 

         1 4
mean +b bT ns T ns

opt opt optJ J J  
  

 
                                 (17) 

 

where 

 

         CM1.1, CM2.1,
mean b bb

T i ns T i nsT i ns

opt best bestJ J J  
    

 
                        (18) 

 

4.3 NN Based TOA Estimation Algorithm 

In this paper, a BPNN is employed which has three layers, an input layer, a hidden layer and an 

output layer. The parameters of the feedforward network in each layer are independent, so they 

must be tuned, which can make the computational complexity of the NN high. The number of 

neurons in the hidden layer has a significant effect on the NN performance [26]. 

To ensure the stability and convergence of the NN, the algorithm was examined to initialize 

the weights and biases in different layers via simulation as in [27]. The number of neurons was 

determined based on the mean squared error (MSE) averaged over different sets of training 

data. The number of neurons considered was 2 to 40, and the NN was trained 200 times for 

each value and the average MSE obtained. The number of times the MSE is less than 1e
–10

 

increases as the number of neurons increases, but the computational complexity also increases. 

With 16 neurons, more than 90% of the MSEs are less than 1e
–10

, and this percentage increases 

minimally as the number of neurons is increased. Thus, 16 neurons are used in the hidden layer 

of the NN for TOA estimation. 

As the norm ranges from 0 to 1, the log sigmoid function is used as the transfer function 

between layers. The well-known Levenberg-Marquardt (LM) algorithm is used to train the NN, 

so the weights and biases in the layers are updated based on the LM optimization in [28]. The 

LM algorithm is typically one of the fastest for BPNN training. The NN has one input and one 

output, and only 26 sets of opt J  (J = -2 to 10 for Tb = 1 ns and 4 ns), are employed, so the 

memory requirements are moderate. To confirm the relationship between J and opt , the 

integer values of J for Tb = 1 ns and 4 ns were used to train the NN. To obtain the NN with the 

best performance, 100 iterations were performed for each integration period, and the NN with 

the lowest MSE was selected. 

4.4 Validation of the Trained NN 

Table 2. Neural network validation results  

Validation Tb (ns) NN input (J) MSE (×e
-33

) 

Internal 1 [-2, -1,…,10] 9.90 

External 1 [-1.5, …, 9.5] 6.16 

Internal 4 [-2, -1, …, 10] 9.90 

External 4 [-1.5, …, 9.5] 6.16 

 

To evaluating the effectiveness of the NN, two validations were performed, internal validation 

with integer values of J in the range -2 to 10, and external validation with half integer values of 

J in the range -1.5 to 9.5. The corresponding results are given in Fig. 5 and Fig. 6, and show 

that the output of the trained NN agree well with 
opt for both integration periods. Thus, the 
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NN parameters can be determined based on an estimation of the channel statistics. 

Consequently, the proposed NN can be employed in any channel environment so long as the 

NN parameters are adjusted appropriately. Table 2 shows that the MSE of the internal 

validation is 9.9e
-33

 while the MSE of the external validation is 6.16e
-33

, which are excellent 

results. 

 
Fig. 5. Internal validation results for the proposed NN 

 
Fig. 6. External validation results for the proposed NN 

 

 

http://link.springer.com/article/10.1186/1687-6180-2012-185/fulltext.html#Tab2


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3061 

5. Results and Discussion  

In this section, the MAE of the proposed NN based algorithm is compared with that of other 

ED threshold algorithms. The 60 GHz residential LOS and NLOS channel models from the 

IEEE 802.15.3c standard are employed, and the results are averaged over 1000 channel 

realizations. The system parameters are the same as used previously. 

Fig. 7 and Fig. 8 show the MAE of the proposed NN based algorithm for SNR values in the 

range -4 to 30 dB for the CM1.1 and CM2.1 channel models, respectively, with different 

integration periods. These results show that this algorithm provides better performance than 

the other ED TOA algorithms over a wide range of SNRs. The MAE in the residential LOS 

channel is less than that in the residential NLOS channel by as much as 20 ns. In the majority 

of cases, the MAE for Tb = 1 ns is less than that for Tb = 4 ns by up to 1.2 ns with either channel 

model. As a consequence, the integration period is a significant factor which affects TOA 

accuracy. In particular, the MAE increases as the integration period is increased. Fortunately, 

the NN based TOA estimation algorithm is independent of the integration period, which 

resolves this problem. 

Table 3 shows the average MAE for six TOA estimation algorithms. Where NN is the 

proposed neural network based algorithm, MES is the maximum energy selection algorithm, 

K is the kurtosis based algorithm, S is the skewness based algorithm, MMR is the ratio of 

maximum to minimum energy based algorithm, and FT is the fixed threshold algorithm with 

normalized thresholds 0.4 and 0.6. The proposed NN based algorithm provides the lowest 

average MAE in all cases. 

Fig. 7 and Fig. 8 show that the NN based algorithm provides the best overall performance, 

particularly at low SNRs. When the SNR is high, the performance difference becomes quite 

small. In particular, the MAE of the NN based algorithm is 0.1 ns less than that of the 

skewness based algorithm when SNR = 24 dB. In the majority of cases, our NN based 

algorithm provides the best performance. Further, the other algorithms have poor performance 

when SNR < 10 dB. 

 
        Fig. 7. MAE versus SNR for different TOA algorithms with channel CM1.1      

http://link.springer.com/article/10.1186/1687-6180-2012-185/fulltext.html#Tab3
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Fig. 8. MAE versus SNR for different TOA estimation algorithms with channel CM2.1 

 
Table 3. Average MAE (ns) for several TOA estimation algorithms 

Channel Tb NN K MES MMR FT0.4 FT0.6 S 

CM1.1 1ns 30.729 39.626 40.398 46.264 51.114 41.116 35.626 

4ns 33.789 41.779 42.045 48.880 53.384 42.796 38.779 

CM2.1 1ns 32.093 41.288 41.644 47.313 51.404 41.385 39.288 

4ns 34.353 44.517 43.341 49.947 53.663 42.868 42.517 

6. Conclusions 

A threshold selection algorithm for TOA estimation based on a NN was presented which 

employs 60 GHz MMW signals. This algorithm is based on an energy detector (ED) which has 

low complexity. A joint metric was proposed based on the skewness, kurtosis and curl of the 

received energy block values. The best thresholds were obtained for the residential LOS 

(CM1.1) and NLOS (CM2.1) channel models from the IEEE 802.15.3c standard with different 

integration periods. The proposed algorithm was shown to provide better TOA estimates 

compared to other ED based algorithms in the majority of cases. This is because the NN based 

algorithm adapts better to changes in the SNR, and is independent of the integration period and 

channel model. 
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