• 제목/요약/키워드: Time Domain Response

검색결과 822건 처리시간 0.025초

A study on nonlinear seismic response analysis of building considering frequency dependent soil impedance in time domain

  • Nakamura, Naohiro
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.91-107
    • /
    • 2009
  • In order to accurately estimate the seismic behavior of buildings, it is important to consider both nonlinear characteristics of the buildings and the frequency dependency of the soil impedance. Therefore, transform methods of the soil impedance in the frequency domain to the impulse response in the time domain are needed because the nonlinear analysis can not be carried out in the frequency domain. The author has proposed practical transform methods. In this paper, seismic response analyses considering frequency dependent soil impedance in the time domain are shown. First, the formulation of the proposed transform methods is described. Then, the linear and nonlinear earthquake response analyses of a building on 2-layered soil were carried out using the transformed impulse responses. Through these analyses, the validity and efficiency of the methods were confirmed.

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

외부 전자파 펄스에 의해 여기된 전송선로 구조의 시간 영역 응답 (Time-Domain Response of Transmission-Line Structures Excited by an External Electromagnetic Pulse)

  • 김태현;정연춘;김세윤;박동철;배범열;박종한
    • 한국전자파학회논문지
    • /
    • 제7권3호
    • /
    • pp.239-245
    • /
    • 1996
  • 외부 전자파펄스에 의해 여기되어지는 두 개의 선로 구조 전송선에 대한 시간 영역 응답을 시간 영역 유한 차분 (FDTD) 기법을 이용하여 분석하였다. 외부 전자파는 TEC cell을 이용하여 생성시켰다. 주파수 영역에서 측정한 실험치를 역푸리에변환을 통해 시간 영역의 값으로 바꾼 후 시간 영역의 수치해석 결과와 비교하였다.

  • PDF

A Time-Domain Method to Generate Artificial Time History from a Given Reference Response Spectrum

  • Shin, Gangsig;Song, Ohseop
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.831-839
    • /
    • 2016
  • Seismic qualification by test is widely used as a way to show the integrity and functionality of equipment that is related to the overall safety of nuclear power plants. Another means of seismic qualification is by direct integration analysis. Both approaches require a series of time histories as an input. However, in most cases, the possibility of using real earthquake data is limited. Thus, artificial time histories are widely used instead. In many cases, however, response spectra are given. Thus, most of the artificial time histories are generated from the given response spectra. Obtaining the response spectrum from a given time history is straightforward. However, the procedure for generating artificial time histories from a given response spectrum is difficult and complex to understand. Thus, this paper presents a simple time-domain method for generating a time history from a given response spectrum; the method was shown to satisfy conditions derived from nuclear regulatory guidance.

Two-dimensional energy transmitting boundary in the time domain

  • Nakamura, Naohiro
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.97-115
    • /
    • 2012
  • The energy-transmitting boundary, which is used in the well-known finite element method (FEM) program FLUSH, is quite efficient for the earthquake response analysis of buildings considering soil-structure interaction. However, it is applicable only in the frequency domain. The author proposed methods for transforming frequency dependent impedance into the time domain, and studied the time domain transform of the boundary. In this paper, first, the estimation methods for both the halfspace condition under the bottom of the soil model and the pseudo three-dimensional effect were studied with the time domain transmitting boundary. Next, response behavior when using the boundary was studied in detail using a practical soil and building model. The response accuracy was compared with those using viscous boundary, and the boundary that considers the excavation force. Through these studies, the accuracy and efficiency of the proposed time domain transmitting boundary were confirmed.

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산 (Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model)

  • 김연정;조인기
    • 지구물리와물리탐사
    • /
    • 제24권4호
    • /
    • pp.158-163
    • /
    • 2021
  • Cole-Cole 모델에 대한 주파수영역 유도분극 반응은 닫힌 형태의 간단한 수식으로 정의된다. 그러나 시간영역 유도분극 반응은 닫힌 형태로 표현되지 않아 Cole-Cole 모델이나 다른 완화모델에 대한 반응을 계산하는 것은 쉽지 않다. 이 논문에서는 Cole-Cole 모델에 대한 시간영역 유도분극 반응을 계산하는 세 가지 방법, 즉 급수 전개법, 선형 필터링법 및 푸리에 변환법을 비교 분석하였다. 수치 실험 결과 급수 전개법은 안정적인 결과를 제시하지 못할 뿐 아니라 수렴 속도가 느리다는 문제점이 있다. 선형 필터링법은 후기 시간에서 만족할 만한 정밀도를 보이지 못 하였다. 푸리에 변환법은 계산시간이 더 많이 걸린다는 단점이 있으나 다른 방법에 비하여 보다 안정적인 것으로 확인되었다.

주파수영역방법에 의한 비선형 모델변수의 실험적 규명 (Experimental identification of nonlinear model parameter by frequency domain method)

  • 김원진
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.458-466
    • /
    • 1998
  • In this work, a frequency domain method is tested numerically and experimentally to improve nonlinear model parameters using the frequency response function at the nonlinear element connected point of structure. This method extends the force-state mapping technique, which fits the nonlinear element forces with time domain response data, into frequency domain manipulations. The force-state mapping method in the time domain has limitations when applying to complex real structures because it needd a time domain lumped parameter model. On the other hand, the frequency domain method is relatively easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of each substurcture. Since this mehtod is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude bot also selecting excitation frequency domain method has some advantages over the classical force-state mapping technique in the number of data points needed in curve fit and the sensitivity to response noise.

다방향 불규칙파중의 인장계류식 해양구조물의 시간영역 해석 (Time Domain Analysis of a Tension Leg Platform in Multi-Directional Irregular Waves)

  • 이창호;김철현
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.36-41
    • /
    • 2006
  • The main object of this study is to develop an accurate and convenient method for the response analysis of offshore structures in real sea states. A numerical procedure is described for predicting the motion responses and tension variations of the ISSC TLP in multi-directional irregular waves. The developed numerical approach in the frequency domain is based on acombination of the three dimensional source distribution method, the dynamic response analysis method, and the spectral analysis method. Frequency domain analysis in the multi-directional irregular waves is expanded to a time domain analysis by using a convolution integral after obtaining the impulse response by Fourier transformation. The results of the comparison between responses in the frequency and time domain confirmed the validity of the proposed approach.

난류-캐스케이드 상호 작용에 의한 광대역 소음장의 시간영역 계산 (Time-domain Computation of Broadband Noise due to Turbulence-Cascade Interaction)

  • 정철웅;정성수;정완섭;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.812-817
    • /
    • 2005
  • The objective of the present work is to develop a time-domain numerical method of broadband noise in a cascade of airfoils. This paper focuses on dipole broadband noise sources, resulting from the interaction of turbulent inflows with the flat-plate airfoil cascade. The turbulence response of a two-dimensional cascade is studied by solving both of the linearised and full nonlinear Euler equations employing accurate higher order spatial differencing, time stepping techniques and non-reflecting inflow/outflow boundary condition. The time-domain result using the linearised Euler equations shows good agreement with the analytical solution using the modified LINSUB code. Through the comparison of the nonlinear time-domain result using the full nonlinear Euler equations with the linear, it is found that the acoustic mode amplitude of the nonlinear response is less than that of the linear response due to the energy cascade from low frequency components to the high frequency ones. Considering the merits of the time-domain methods over the typical time-linearised frequency-domain analysis, the current method is expected to be promising tools for analyzing the effects of the airfoil shapes, non-uniform background flow, linear-nonliear regimes on the broadband noise due to gust-cascade interaction.

  • PDF