• Title/Summary/Keyword: Time Delay Error

Search Result 635, Processing Time 0.034 seconds

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF

Design and Algorithm Verification of Precision Navigation System (정밀항법 시스템 설계 및 알고리즘 검증)

  • Jeong, Seongkyun;Kim, Taehee;Lee, Jae-Eun;Lee, Sanguk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • As GNSS(Global Navigation Satellite System) is used in various filed, many countries establish GNSS system independently. But GNSS system has the limitation of accuracy and stability in stand-alone mode, because this system has error elements which are ionospheric delay, tropospheric delay, orbit ephemeris error, satellite clock error, and etc. For overcome of accuracy limitation, the DGPS(Differential GPS) and RTK(Real-Time Kinematic) systems are proposed. These systems perform relative positioning using the reference and user receivers. ETRI(Electronics and Telecommunications Research Institute) is developing precision navigation system in point of extension of GNSS usage. The precision navigation system is for providing the precision navigation solution to common users. If this technology is developed, GNSS system can be used in the fields which require precision positioning and control. In this paper, we introduce the precision navigation system and perform design and algorithm verification.

Design of a 6~18 GHz 8-Bit True Time Delay Using 0.18-㎛ CMOS (0.18-㎛ CMOS 공정을 이용한 6~18 GHz 8-비트 실시간 지연 회로 설계)

  • Lee, Sanghoon;Na, Yunsik;Lee, Sungho;Lee, Sung Chul;Seo, Munkyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.924-927
    • /
    • 2017
  • This paper presents a 6~18 GHz 8-bit true time delay (TTD) circuit. The unit delay circuit is based on m-derived filter with relatively constant group delay. The designed 8-bit TTD is implemented with two single-pole double-throw (SPDT) switches and seven double- pole double-throw (DPDT) switches. The reflection characteristics are improved by using inductors. The designed 8-bit TTD was fabricated using $0.18{\mu}m$ CMOS. The measured delay control range was 250 ps with 1 ps of delay resolution. The measured RMS group delay error was less than 11 ps at 6~18 GHz. The measured input/output return losses are better than 10 dB. The chip consumes zero power at 1.8 V supply. The chip size is $2.36{\times}1.04mm^2$.

Improvement of Time Synchronization of SpaceWire Network through Time-Code Extension (타임코드 확장을 통한 스페이스와이어 네트워크의 시각 동기화 성능 개선)

  • Ryu, Sang-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.724-730
    • /
    • 2017
  • SpaceWire invented for spacecrafts has Time-Code defined for time synchronization over SpaceWire network. A Time-Code suffers transmission delay of 14[bit-period] and jitter up to 10[bit-period] whenever it passes through a SpaceWire link, which is the primary cause of time synchronization error. This work presents a simple method to improve the time synchronization which uses two extended Time-Codes. Nodes on a SpaceWire network can find how much delay and jitter a received Time-Code has suffered while it passes through the network, and they can correct time synchronization error with this information. The proposed method was validated in a simulation environment developed based on OMNeT++. The simulation result showed that time synchronization error less than a few bit-periods can be achieved. The proposed method is cost effective and suitable for small-scale SpaceWire network systems.

In-situ Stress Measurement Using AE and DRA (AE와 DRA를 이용한 초기응력의 측정에 관한 연구)

  • Park, Pae-Han;Jeon, Seok-Won;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • In-situ stress measurement using AE (Acoustic Emission) and DRA (Deformation Rate Analysis) is usually carried out under uniaxial loading in the laboratory and it consumes delay time from drilling to testing. Therefore, it should be considered how the lateral stress and delay time influence on the test results for the in-situ stress determination. As the delay time increased, the accuracy of estimating the pre-stress decreased. The pre-stress of the specimen loaded only axially was determined within an error of less than 9% (using AE) and 4% (using DRA). And the specimen on which axial pre-stress and the confining pressure were loaded had an error of less than 17% (using AE) and 14% (using DRA). The results of AE and DRA for field specimens were very similar with each other but smaller than those of hydraulic fracturing method.

  • PDF

Recursive Least Squares Run-to-Run Control with Time-Varying Metrology Delays

  • Fan, Shu-Kai;Chang, Yuan-Jung
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.262-274
    • /
    • 2010
  • This article investigates how to adaptively predict the time-varying metrology delay that could realistically occur in the semiconductor manufacturing practice. Metrology delays pose a great challenge for the existing run-to-run (R2R) controllers, driving the process output significantly away from target if not adequately predicted. First, the expected asymptotic double exponentially weighted moving average (DEWMA) control output, by using the EWMA and recursive least squares (RLS) prediction methods, is derived. It has been found that the relationships between the expected control output and target in both estimation methods are parallel, and six cases are addressed. Within the context of time-varying metrology delay, this paper presents a modified recursive least squares-linear trend (RLS-LT) controller, in combination with runs test. Simulated single input-single output (SISO) R2R processes subject to various time-varying metrology delay scenarios are used as a testbed to evaluate the proposed algorithms. The simulation results indicate that the modified RLS-LT controller can yield the process output more accurately on target with smaller mean squared error (MSE) than the original RLSLT controller that only deals with constant metrology delays.

A Target Tracking Accuracy Improvement Method by Kalman Filter for EOTS with Time Delay (시간지연을 가지는 전자광학 추적 시스템의 칼만필터를 이용한 표적 추적 성능 개선 방법)

  • 마진석;권우현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.170-182
    • /
    • 1999
  • In this paper, we present a tracking accuracy enhancement method by compensating the time delay of the video tracker in an EOTS. The proposed method has two functional parts, which can cope with the time delay of LOS and maneuvering target informations by Smith predictor and Kalman filter. So it can dramatically reduce the tracking error over conventional PI control or Smith predictor control. To verify the proposed method, various and extensive simulation and experimental results are given.

  • PDF

New model reduction method and optimized the Smith predictor disign using reduced model

  • Jeoung nae choi;joon ho Cho;Hwang, Hyung-Soo;Park, Moon-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.62.3-62
    • /
    • 2002
  • In this paper, we proposed a control technique that can be applied to various processes. The most of the process can bereduced to second order plus time delay (SOPTD) model. And we proposed improved model reduction algorithm using geneticalgorithm. This method considered four points to reduce the error between original model and reduced model in the Nyquistcurve. And, to compensate time delay, the Smith predictor plus PID controller is adopted. And a new PID tuning algorithm wasproposed, which got from numerical analysis and can be obtained the optimal performance. The PID parameters are obtainedfrom the coefficients and time delay of reduced model. The simulation results show the validity.

  • PDF

A Switch-Level CMOS Delay Time Modeling and Parameter Extraction (스위치 레벨 CMOS 지연시간 모델링과 파라미터 추출)

  • 김경호;이영근;이상헌;박송배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.1
    • /
    • pp.52-59
    • /
    • 1991
  • An effective and accurate delay time model is the key problem in the simulation and timing verification of CMOS logic circuits. We propose a semi-analytic CMOW delay time model taking into account the configuration ratio, the input waveform slope and the load capacitance. This model is based on the Schichman Hodges's DC equations and derived on the optimally weighted switching peak current. The parameters necessary for the model calculation are automatically determined from the program. The proposed model is computationally effective and the error is typically within 10% of the SPICEA results. Compared to the table RC model, the accuracy is inproved over two times in average.

  • PDF

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles (이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법)

  • Boo, Jung-il;Ha, Jeong-wan;Kim, Kang-san;Kim, Bokki
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.392-399
    • /
    • 2019
  • In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.