DOI QR코드

DOI QR Code

Wireless TDD Time Synchronization Technique Considering the Propagation Delay Between Mobile Vehicles

이동체간 전파지연을 고려한 무선 TDD 시각 동기화 기법

  • 부정일 (단암시스템즈 기술연구소) ;
  • 하정완 (단암시스템즈 기술연구소) ;
  • 김강산 (단암시스템즈 기술연구소) ;
  • 김복기 (단암시스템즈 기술연구소)
  • Received : 2019.10.04
  • Accepted : 2019.10.22
  • Published : 2019.10.31

Abstract

In this paper, we have studied wireless time division duplex(TDD) time synchronization technique considering the propagation delay between mobile vehicles. The existing IEEE 1588 precision time protocol(IEEE 1588 PTP) algorithm was applied and the time synchronization between the two nodes was achieved through the propagation delay and clock offset time correction calculated between master slave nodes during wireless TDD communication. The time synchronization process and procedure of IEEE 1588 PTP algorithm were optimized, thereby reducing the propagation delay error sensitivity for real-time moving vehicles. The sync flag signal generated through the time correction has a time synchronization accuracy of max +252.5 ns within 1-symbol(1.74 M symbol/sec, ${\pm}287.35ns$) through test and measurement, and it was confirmed that the time synchronization between master slave nodes can be achieved through sync flag signal generated during GPS disturbance.

본 논문에서는 이동체간 전파지연을 고려한 무선 TDD(time division duplex) 시각 동기화 기법에 대하여 연구하였다. 기존 IEEE 1588 PTP 알고리즘을 응용하였으며, 무선 TDD 통신 시 마스터/슬레이브 노드간 계산된 전파지연 및 클럭 오프셋 시각 보정을 통해 두 노드간의 시각 동기화를 이루게 하였다. IEEE 1588 PTP 알고리즘의 시각 동기화 과정 및 절차를 최적화하였으며, 이를 통해 실시간으로 이동하는 이동체에 대한 전파지연 오차 민감도를 감소시켰다. 시각 보정을 통해 생성된 sync flag 신호는 시험 및 측정값을 통해 1-symbol (1.74 M symbol/sec, ${\pm}287.35ns$) 이내의 최대 +252.5 ns 시각 동기화 정밀도를 갖는 것을 확인하였으며, GPS(global positioning system) 교란 시 생성된 sync flag 신호를 통해 마스터/슬레이브 노드간 시각 동기화를 이룰 수 있음을 확인하였다.

Keywords

References

  1. J. Elson, L. Girod and D. Estrin, "Fine-grained network time synchronization using reference broadcasts," in Proceeding of the fifth Symposium on Operating Systems Design and Implementation, Boston: MA, pp.147-163, Dec. 2002.
  2. S. Ganeriwal, R. Kumar and M. B. Srivastava, "Timing-sync protocol for sensor networks," in Proceeding of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles: CA, pp.138-149, Nov. 2003.
  3. M. Maroti, B. Kusy, G. Simon and A. Ledeczi, "The flooding time synchronization protocol," in Proceeding of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore: MD, pp.39-49, Nov. 2004.
  4. D. Koutsonikolas, T. Salonidis, H. Lundgren, P. Leguyadec, Y. C. Hu and I. Sheriff, "TDM MAC protocol design and implementation for wireless mesh networks," in Proceeding of the 2008 ACM Conference on Emerging Networking Experiment and Technologies, Conext 2008, Madrid: Spain, pp. 325-336, Dec. 2008.
  5. P. Djukic and P. Mohapatra, “Soft-TDMAC: A software-based 802.11 overlay TDMA MAC with microsecond synchronization,” IEEE Transactions on Mobile Computing, Vol. 11, No. 3, pp. 478-491, Mar. 2012. https://doi.org/10.1109/TMC.2011.56
  6. M. H. Seo, J. S. Kim, H. W. Cho, S. H. Jung, J. H. Park and T. J. Lee, “A study on cross-layer network synchronization architecture for TDMA-based mobile Ad-Hoc networks,” The Journal of Korean Institute of Communications and Information Sciences, Vol. 37, No. 8, pp. 647-656, 2012. https://doi.org/10.7840/kics.2012.37B.8.647
  7. S. K. Jeong, T. H. Kim, C. S. Sin and S. U. Lee, “Technical trends of smart jamming for GPS signal,” Electronics and telecommunications trends, Vol. 27, No. 6, pp. 75-82, 2012.
  8. K. C. Kwon, C. K. Yang and D. S. Shim, “Anti-spoofing method using double peak detection in the two-dimensional C/A code search space,” The journal of Korea Navigation Institute, Vol. 17, No. 2, pp. 157-164, 2013.