• 제목/요약/키워드: Time Conversion

검색결과 2,165건 처리시간 0.031초

질감 활성도 기반 양방향 움직임 추정과 인접 움직임 정보를 이용한 프레임률 증가 기법 (Frame rate up conversion method using bilateral motion estimation based on texture activity and neighboring motion information)

  • 정윤호;김진형;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.797-805
    • /
    • 2014
  • In this paper we propose a new frame rate up conversion scheme which is used to overcome the motion blur problem of liquid crystal display caused by its slow response. The conventional bilateral motion estimation method which is mainly used in the frame rate up conversion scheme has a drawback that it cannot find true motion vector if there are blocks with simple texture in the search range. To solve this problem, a texture adaptive bilateral motion estimation method that increases cost value of block with simple texture is proposed. Also a motion estimation scheme that utilizes neighboring motion vector effectively is proposed to reduce computation time required to estimate motion. Since the proposed scheme does not apply all available motion vectors within the search range, the execution time of frame rate up conversion can be reduced dramatically. Experimental results show that the interpolated frame image quality of the proposed method is improved in subjective as well as objective view point compared with that of the conventional method.

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

조사광이 통과하는 치질의 두께와 광조사시간에 따른 광중합형 복합레진의 중합률에 관한 연구 (A STUDY ON THE DEGREE OF CONVERSION OF LIGHT CURING COMPOSITE RESIN ACCORDING TO THE THICKNESS OF TOOTH STRUCTURE PENETRATED BY LIGHT AND APPLIED LIGHT CURING TIME)

  • 황기환;장인호;이세준;이광원
    • Restorative Dentistry and Endodontics
    • /
    • 제27권1호
    • /
    • pp.16-23
    • /
    • 2002
  • Physical properties of composite resins such as strength, resistance to wear, discoloration, etc depend on the degree of conversion of the resin components. The purpose of this study was to evaluate the degree of conversion of the composite resins according to the thickness of tooth structure penetrated by light and applied light curing time. The coronal portions of extracted human teeth (one anterior tooth, three posterior tooth) was embedded by pink denture material. the mounted teeth were cut into three illumination sections (1mm thickness enamel section, 1mm thickness dentin section, 2mm thicknes dentin section) and one backing section with cutting wheel. Thin resin films were made by using 6kg pressure between slide glass during 5 minutes Thin resin film was light cured on coupled illumination section during 40sec, 80sec and 120sec. each illumination section was coupled as follows; no tooth structure(X), ename section(E), enamel section + 1mm dentin section(ED1), enamel section + 2mm dentin section(ED2), enamel section + 1mm dentin section + 2mm dentin section(EDD). To simulate the clinical situation more closely, thin resin films was cured against a backing section of tooth structure. The degree of conversion of carbon double bonds to single bonds in the resin films were examined by means of Fourier Transform Infrared Spectrometer. The results were obtained as follows ; 1 As curing time was increased, conversion rate was increased and as tooth thickness which was penetrated by curing light was increased, conversion rate was decreased. 2. At all tooth thickness groups, conversion rate between 80sec and 120sec was not significantly increased(P>0.05). 3. At 40sec group and 80sec, conversion rate between no tooth structure(X) group and 1mm enamel section(E) group was not significantly decreased(P>0.05). 4. At 80sec group and 120sec, conversion rate between 1mm enamel section(E) group and 1mm enamel section + 1mm dentin section(ED1) group was not significantly decreased(P>0.05).

Verilog에서 SystemC로 변환을 위한 효율적인 방법론 연구 (A research on an efficient methodology for conversion from Verilog to SystemC)

  • 신윤수;고광철;정제명
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.1177-1180
    • /
    • 2003
  • Recently, SystemC is one among the language observed. In Industry, there are many the languages that use Verilog. But, unskillful SystemC users must learn SystemC for conversion that from Verilog to SystemC and need time and effort for this. By these reason, feel necessity of easy and efficient conversion. This paper argues efficient methodology to change Verilog to SystemC. Abstract concepts of Verilog are proposed fittingly each one by one in SystemC.

  • PDF

Passive 트랜스폰더의 RF-DC 변환회로에 대한 설계 및 분석 (The Design and Analysis of RF-DC conversion circuit in the Passive Tranponder)

  • 진인수;김종범;양경록;김양모
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.757-760
    • /
    • 1999
  • Depending upon the existence of the battery, transponder is divided into active and passive transponder. The passive transponder operates without battery and so has no limitation in its operating range and life time. But it needs the RF-DC conversion circuit. In this paper, the analysis and design of the RF-DC conversion circuit in passive transponder operated in high frequency is presented and is confirmed by simulation and experiment.

  • PDF

Pipeline defect detection with depth identification using PZT array and time-reversal method

  • Yang Xu;Mingzhang Luo;Guofeng Du
    • Smart Structures and Systems
    • /
    • 제32권4호
    • /
    • pp.253-266
    • /
    • 2023
  • The time-reversal method is employed to improve the ability of pipeline defect detection, and a new approach of identifying the pipeline defect depth is proposed in this research. When the L(0,2) mode ultrasonic guided wave excited through a lead zirconate titinate (PZT) transduce array propagates along the pipeline with a defect, it will interact with the defect and be partially converted to flexural F(n, m) modes and longitudinal L(0,1) mode. Using a receiving PZT array attached axisymmetrically around the pipeline, the L(0,2) reflection signal as well as the mode conversion signals at the defect are obtained. An appropriate rectangle window is used to intercept the L(0,2) reflection signal and the mode conversion signals from the obtained direct detection signals. The intercepted signals are time reversed and re-excited in the pipeline again, result in the guided wave energy focusing on the pipeline defect, the L(0,2) reflection and the L(0,1) mode conversion signals being enhanced to a higher level, especially for the small defect in the early crack stage. Besides the L(0,2) reflection signal, the L(0,1) mode conversion signal also contains useful pipeline defect information. It is possible to identify the pipeline defect depth by monitoring the variation trend of L(0,2) and L(0,1) reflection coefficients. The finite element method (FEM) simulation and experiment results are given in the paper, the enhancement of pipeline defect reflection signals by time-reversal method is obvious, and the way to identify pipeline defect depth is demonstrated to be effective.

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

다양한 화성처리 용액 조건에서 마그네슘-알루미늄 합금위에 형성된 박막의 특성 평가 (Characteristics Evaluation of Thin Films Formed on Mg-Al Alloy in Various Chemical Conversion Solution Conditions)

  • 장석기;김성종;김정일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.98-106
    • /
    • 2005
  • The chemical conversion film formed on magnesium alloy was investigated by using the colloidal silica with some parameters such as solution pH. temperature, solution conditions, and treatment time. Moreover. the solutions consisted of colloidal silica titanium sulfate, and cobalt ions were used for the colloidal silica film to having a good corrosion resistance and adhesion properties. It was thought that the film at 298K was made with combination of Si-O. The quantity of film formed at high temperature such as 333K and 353K is smaller than dissolved quantity during chemical conversion treatment. Adding $CoSO_4$ to the colloidal silica solution enhanced the adhesion force between the silica film and magnesium substrate, The optimum conditions for the chemical conversion treatment solution were PH 2.90 s treatment, and 298K.

비파괴시험기법을 이용한 토량환산계수 산정 방법 제시 (Estimation of Soil Volume Conversion Factors using Nondestructive Testing Methods)

  • ;류희환;조계춘;홍은수;진규남
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.717-721
    • /
    • 2010
  • Soil volume conversion factors are used for estimation of an excavated the soil volume which will be removed or added in levelling the ground surface of a construction site. An accurate evaluation method will help us reduce a construction cost and time consuming. In this study, we performed the laboratory tests, including grain size measurement, water content, specific gravity, porosity, density and XRD tests, to suggest reliable soil volume conversion factors and weathering indices in field using nondestructive methods. The weathering index and soil volume conversion factor L are obtained for different types of soils. At results, the CIW index is the best method measuring the weathering index and the factor L is relative to natural porosity, void ratio, density and dry density.

  • PDF

컬러 모델의 특성 기반 화염 영상의 입체 변환 기법 (Stereoscopic Conversion of fame Images Based on Characteristics of Color Models)

  • 정다운;최지은;조철용;김제동;길종인;김만배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.25-27
    • /
    • 2009
  • This paper presents the stereoscopic conversion of flame images. The stereoscopic conversion is a technology that generates left and right images from a monoscopic image. Even though many conversion methods have been introduced and commercialized so far, the processing of flame images is relatively few. Such conventional methods are effectively used either real-time or off-line. However, the application of such schemes to special-effect images such as flame is hard to be applied. The proposed method is designed to convert a flame image into a stereoscopic image. Depth map of flame regions are produced based on the analysis of color models of flames. Experimental results tested on diverse flame image sets validates the effectiveness of the proposed method.

  • PDF