• Title/Summary/Keyword: Tillage method

Search Result 82, Processing Time 0.032 seconds

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Vertical Distribution of Weed Seed in the Soil as affected by Tillage and No-till (경운과 무경운에 따른 토양 내 잡초종자의 수직적 분포양상)

  • Lee, Byung-Mo;Park, Kwang-Lai;Lee, Youn;Cho, Jeong-Rae;Lee, Sang-Min;An, Nan-Hee;Choi, Hyun-Sug;Jee, Hyeong-Jin
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • A simple monitoring method was designed to evaluate seed bank in a upper soil (0 to 30 cm depth), which was observed for the pattern of vertical distribution of weed in the soil under tillage or no-tillage condition. The field experiment was established at an organic corn field located in Hwacheon in Kangwon-do from 2010 to 2011. Undistributed linear soil samples were taken using non-destructive soil sampler from 0 to 30 cm depth at the tillage or no-tillage soils. Weed seed distribution in the linear soil samples was estimated by counting the number of weed germinated according to the soil depth. Under tillage condition, the weed seeds were more evenly distributed from 0 to 30 cm depth, with being 75% of weed seeds located in 0 to 15 cm depth compared to the no-tillage condition. Soil samples taken by no-tillage condition had 85% of weed seeds within 15 cm of soil depth, with being 93% of weed seeds from 0 to 20 cm depth. The number of weeds or the number of weed species were three times higher for tillage soil compared to no-tillage soil, and the major dominant weed species were observed for annual plants, such as Echinochloa crus-gall, Mollugo pentaphylla, and Digitaria ciliaris.

Effect of Tillage System and Fertilization Method on Biological Activities in Soil under Soybean Cultivation (경운방법과 시비방법이 콩 재배 토양의 생물학적 활성에 미치는 영향)

  • Oh, Eun-Ji;Park, Ji-Su;Yoo, Jin;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.223-229
    • /
    • 2017
  • BACKGROUND: Tillage systems and fertilization play an important role in crop growth and soil improvement. This study was conducted to determine the effects of tillage and fertilization on the microbial biomass C and dehydrogenase activity of soils in a field under cultivation of soybean. METHODS AND RESULTS: An experimental plot, located in the temperate climate zone, was composed of two main sectors that were no-tillage (NT) and conventional tillage (CT), and they were subdivided into four plots, respectively, in accordance with types of fertilizers (non fertilizer, chemical fertilizer, hairy vetch, and liquid pig manure). Microbial biomass C and dehydrogenase activity were evaluated from May to July in 2016. The microbial biomass C and dehydrogenase activity of NT soils were significantly higher than those of CT in all fertilizer treatments, and they were further increased in hairy vetch treatment than the other fertilizer treatments in both NT and CT. The dehydrogenase activity was closely related to microbial biomass C. CONCLUSION: It is concluded that application of green manure combined with no-tillage can provide viable management practices for enhancing microbial properties of soil.

Cultural Management to Control Weedy Rice in Paddy Field

  • Kim, Sang-Yeol;Son, Yang;Park, Sung-Tae;Kim, Ho-Yeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.4
    • /
    • pp.232-236
    • /
    • 2000
  • To obtain a basic information on the development of effective control strategies for weedy rice in direct seeding rice cultivation, occurrence patterns of weedy rice as influenced by different cultural practices such as cultivation method, water management, seeding time, and tillage were investigated in field or pot experiments. High occurrence of weedy rice was observed in a continuous direct seeding paddy field as compared to machine transplanted one. Based on the percent of weedy rice panicle over three years trial, high ridged dry seeding was highest with 36.9%, followed by wet seeding with 30.9%, water seeding with 14.6% and machine transplanting rice with 0.8%, indicating 97.8% reduction in weedy rice occurrence by machine transplanting rice as compared with high ridged dry seeding. Germination of weedy rice was promoted to 83-94 % when rice panicle was flooded from September 30 to October 10 for 6 days and 74-88% for 9 days on October 20. Weedy rice occurrence was also substantially reduced by delayed seeding on June 10 and intensive tillage. The results suggest that machine transplanting rice be more effective cultural practice than flooding treatment, delayed seeding and intensive tillage when weedy rice problem occurs in direct seeded paddy field.

  • PDF

Analysis of Consumption of Homemade Organically Processed Food Analysis of The Carbon Emission Reduction Effect from No-Tillage in Pepper (Capsicum annuum L.) Cultivation (고추의 무경운 재배에 따른 탄소저감효과 분석)

  • Lee, Gil-Zae;Choi, Yoon-Sil;Yang, Seung-Koo;Lee, Jin-Hong;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Korean type of no-tillage cultivation method which was applied on this study used the ridge and the furrow and constantly recycling them as it was suitable for Korea's weather and farming conditions. This no-tillage cultivation was reported to have little negative impact such as reduction of production (Kwon et al., 1997). In addition, it was found to have a lot of benefits as it requires less agro-materials and energy costs as well as shortened working hours because tillage operation is not needed. (Yang et al., 2012). According to an analysis, no-tillage cultivation can reduce greenhouse gas emissions by $344.7kgCO^2$ (58%) in every 10a ($1,000m^2$) compared to ordinary pepper farming technique (Korea averages). Direct-indirect reduction effects from using fertilizer and using less amount of energy were 92% and 44% respectively both of which can be considered very high. Besides the direct effects of no-tillage cultivation, soil management using no-tillage technique raises carbon sequestration effect on soil as time goes on (West & Marland, 2002), that is why the technique is expected to have constant carbon emission reduction effect. For theses reasons, distribution and expansion of Korean type no-tillage cultivation are expected to play a role as major agro-green technologies for achieving our goal of reducing greenhouse gas emissions in agricultural sector.

Effect Analysis of Tillage Depth on Rotavator Shaft Load Using the Discrete Element Method (이산요소법을 활용한 경심이 로타리 작업기의 경운날 축 부하에 미치는 영향 분석)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Sang Dae Lee;Seung Je Cho
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.115-122
    • /
    • 2023
  • This study utilized a discrete element method (DEM) simulation, as one of the virtual field trials, to predict the impact of tillage depth on the rotary blade shaft during rotavator tilling. The virtual field for the simulation was generated according to soil properties observed in an actual field. Following the generation of particles for the virtual field, a sequence of calibration steps followed to align the mechanical properties more closely with those of real soil. Calibration was conducted with a focus on bulk density and shear torque, resulting in calibration errors of just 0.02% for bulk density and 0.52% for shear torque. The prediction of the load on a rotary tiller's blade shaft involved a three-pronged approach, considering shaft torque, draft force, and vertical force. In terms of shaft torque, the values exhibited significant increases of 42.34% and 36.91% for every 5-centimeter increment in tillage depth. Similarly, the vertical force saw substantial growth by 40.41% and 36.08% for every 5-centimeter increment. In contrast, the variation in draft force based on tillage depth was comparatively lower at 18.49% and 0.96%, indicating that the effect of tillage depth on draft force was less pronounced than its impact on shaft torque and vertical force. From a perspective of agricultural machinery research, this study provides valuable insights into the DEM soil modeling process, accounting for changes in soil properties with varying tillage depths. These findings are expected to be instrumental in future agricultural machinery design studies.

Effects of Animal Manure Compost, Tillage Method and Crop System on Soil Properties in Newly Organic Corn Cultivation Field (신규 유기농 옥수수 재배 시 가축분 퇴비, 경운방법 및 작부체계가 토양 환경에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Nam, Hong-Sik;Jung, Jung-A;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.31-43
    • /
    • 2018
  • This study was conducted to investigate the effects of organic farmland soil and nutrient management on soil properties depending on organic (animal manure compost and green manure [hairy vetch]) and chemical fertilization, tillage and no-tillage, and crop rotation (corn-wheat, corn-.hairy vetch). It was found that the application of organic matter such as animal manure compost and hairy vetch, increased the soil organic matter content, the soil microbial density and microbial biomass C content as compared with the chemical fertilizer treatment. It was also confirmed that the functional diversity of soil microbial community was increased. As a result of the comparison with the crop rotation and single cropping, the soil chemistry showed no significant difference between the treatments, but the corn-wheat and corn-hairy vetch rotation treatments tended to have higher microbial biomass C content and shannon's diversity index than the single cropping. Soil chemical properties of tillage and no-tillage treatments showed no significant difference between treatments. There was no statistically significant difference in substrate utilization of soil microbial community between tillage and no-tillage treatment. Correlation analysis between soil chemical properties and soil microbial activity revealed that soil organic matter content and exchangeable potassium content were positively correlated, with statistical significance, with substrate utilization, and substrate richness. To conclude, organic fertilization had positive effects on the short-term improvement of soil chemical properties and diversity of microbial communities.

Occurrence Pattern and Control Method of Water - foxtail(Alopecurus aequalis Ohwi) in No - tillage Paddy (무경운답(無耕耘畓)에서 둑새풀의 발생양상(發生樣相)과 방제방법(防除方法))

  • Hong, Kwang-Pyo;Kim, Jang-Yong;Kang, Dong-Ju;Shin, Won-Gyo
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.176-180
    • /
    • 1996
  • In order to estabilish a labour-saved and environmental protected paddy rice system in Southern Korea, new system, called no-tillage paddy system, was proposed and investigated from 1988 to 1996. Under the no-tillage paddy system, occurrence pattern, control value and regrowth of water foxtail each treatment(herbicides and application dates), and occurrence of volunteer rice plant in application dates of herbicide were investigated. The growth of water-foxtil was markedly increased from middle of May and no. of tillers and dry weight of water-foxtail increased up to 3rd crop year in no-tillage. Glyphosate application for control of water-foxtail was 20 days before transplanting. And when the soil under the no-tillage paddy system in May 1 and May 10 application of herbicide machine-transplanted with 8-day-old seedlings missing hills were increased compared to April 20 and early growth stages of machine transplanted of rice in April 20 applications of herbicide showed increased plant height, no. of tillers of rice, occurrence of volunteer rice plants from the shattered seeds were 1,600plants/10a and decreased in May 10 compared to April 20 and May 1.

  • PDF

Effects of Sowing Date and Method on the Yield and Winter Survival of Italian Ryegrass in Paddy (파종시기와 파종방법이 답리작 Italian ryegrass의 월동력과 수량에 미치는 영향)

  • 고영두;정길영;류영우;김두환;김재황
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.30-37
    • /
    • 1991
  • This experiment was conducted to determine optimal sowing date and method of Italian ryegrass(Lo1iuwr wzultiflorum. Tetrone) in paddy of Gyeong Nam area. Treatments given were four sowing dates(Sep. 30, Oct. 10, Oct. 20 and Oct. 30) and four sowing methods (broadcasting on tillage ridging, broadcasting on zerotillage ridging, boundless broadcasting and alternated drilling). The characteristics of growth, winter survival, yield(fresh and dry matter) and nutr~ent quality were observed. The results obtained are summarized as follows: 1. Winter survival and yield components such as plant height, and number of stem were the highest due to higher survival tillers at the sown time of Sep. 30(p<. 05). 2. Plants sown on Sep. 30 showed the highest fresh and dry matter yield. Yield was decreased as delaying the date of sowing. Fresh and dry matter yield sown on Oct. 10, were obtained 7600 and 1100 kg, respectively, aftenvardly sign~ficantly decreased(p< .05). 3. Effect of sowing time and method on chemical composition were not recognized. 4. Winter surviva: sown on boundless-broadcasting was lower(p<. 05) than those of sown on broadcasting on ridging and alternated-drilling. 5. Fresh and dry matter y~elds were the highest when sown on broadcasting on tillage ridging but that of sown on houndless-broadcasting was relatively low. 6. The growth and forage yield were enhanced by sowing up to Oct. 10 and by sown on broadcasting on ridging (tillage or zerotillage).

  • PDF