• Title/Summary/Keyword: Tie Points

Search Result 47, Processing Time 0.032 seconds

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Automatic generation of reliable DEM using DTED level 2 data from high resolution satellite images (고해상도 위성영상과 기존 수치표고모델을 이용하여 신뢰성이 향상된 수치표고모델의 자동 생성)

  • Lee, Tae-Yoon;Jung, Jae-Hoon;Kim, Tae-Jung
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • If stereo images is used for Digital Elevation Model (DEM) generation, a DEM is generally made by matching left image against right image from stereo images. In stereo matching, tie-points are used as initial match candidate points. The number and distribution of tie-points influence the matching result. DEM made from matching result has errors such as holes, peaks, etc. These errors are usually interpolated by neighbored pixel values. In this paper, we propose the DEM generation method combined with automatic tie-points extraction using existing DEM, image pyramid, and interpolating new DEM using existing DEM for more reliable DEM. For test, we used IKONOS, QuickBird, SPOT5 stereo images and a DTED level 2 data. The test results show that the proposed method automatically makes reliable DEMs. For DEM validation, we compared heights of DEM by proposed method with height of existing DTED level 2 data. In comparison result, RMSE was under than 15 m.

  • PDF

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings (건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가)

  • Yeji, Kim;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.407-414
    • /
    • 2015
  • Interest points are generally located at the pixels where height changes occur. So, interest points can be the significant pixels for DSM generation, and these have the important role to generate accurate and reliable matching results. Manual operation is widely used to extract the interest points and to match stereo satellite images using these for generating height information, but it causes economic and time consuming problems. Thus, a tie point extraction method using Harris-affine technique and SIFT(Scale Invariant Feature Transform) descriptors was suggested to analyze height information of buildings in this study. Interest points on buildings were extracted by Harris-affine technique, and tie points were collected efficiently by SIFT descriptors, which is invariant for scale. Searching window for each interest points was used, and direction of tie points pairs were considered for more efficient tie point extraction method. Tie point pairs estimated by proposed method was used to analyze height information of buildings. The result had RMSE values less than 2m comparing to the height information estimated by manual method.

Speeding up the KLT Tracker for Realtime Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 KLT 트랙커의 속도개선)

  • Supannee, Tanathong;Lee, Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.77-80
    • /
    • 2010
  • The demand for human security significantly promotes the development of surveillance applications using a multi-sensor integrated UAV system. For more sophisticated operations, the system should provide a sequence of images rectified in a ground coordinate system in realtime. This rectification requires accurate position and attitude of the camera at the time of exposure of each image, which can be estimated through an Aerial Triangulation process using the GPS/INS data and tie points between adjacent images. In this work, the KLT tracker is utilized to obtain the tie points. To satisfy the realtime requirements, we present an approach to speed up the tracker by supplying the initial guessed positions of tie points based on the exterior orientation. The experimental results show that, when the guessed positions are supplied, the KLT tracker consumed less computational time than the ordinary KLT which is more suitable to be incorporated into the realtime image georeferencing process.

  • PDF

Block Adjustment and Orthorectification for Multi-Orbit Satellite Images

  • Chen, Liang-Chien;Liu, Chien-Liang;Teo, Tee-Ann
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.888-890
    • /
    • 2003
  • The objective of this investigation is to establish a simple yet effective block adjustment procedure for the orthorectification of multi-orbit satellite images. The major works of the proposed scheme are: (1) adjustment of satellite‘s orbit accurately, (2) calculation of the error vectors for each tie point using digital terrain model and ray tracing technique, (3) refining the orbit using the Least Squares Filtering technique and (4) generation of the orthophotos. In the process of least squares filtering, we use the residual vectors on ground control points and tie points to collocate the orbit. In orthorectification, we use the indirect method to generate the orthoimage. Test areas cover northern Taiwan. Test images are from SPOT 5 satellite. Experimental results indicate that proposed method improves the relative accuracy significantly.

  • PDF

Strut-and-Tie Models for RC Flexural Members under Cyclic Loading (스트럿-타이 모텔을 이용한 RC 휨부재의 주기적 거동에 관한 연구)

  • 이수곤;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.453-458
    • /
    • 2001
  • This paper presents the procedure to find the hysteresis loop of RC member using a modified strut-and-tie model. The forces and displacements at critical points, that are initial yielding point, target displacement point, unloading elastic limit, and reloading point after pinching, are investigated with the strut-and-tie models. Using bond-slip relationship, the elastic behavior of tie element is determined. The plastic flow behavior after flexural yielding is expressed by changing the location of longitudinal strut. Determination of pinching effect completes the initial hysteresis loop, assuming that the behavior of the opposite direction is symmetrical form.

  • PDF

Effective Reduction of Horizontal Error in Laser Scanning Information by Strip-Wise Least Squares Adjustments

  • Lee, Byoung-Kil;Yu, Ki-Yun;Pyeon, Moo-Wook
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.109-120
    • /
    • 2003
  • Though the airborne laser scanning (ALS) technique is becoming more popular in many applications, horizontal accuracy of points scanned by the ALS is not yet satisfactory when compared with the accuracy achieved for vertical positions. One of the major reasons is the drift that occurs in the inertial measurement unit (IMU) during the scanning. This paper presents an algorithm that adjusts for the error that is introduced mainly by the drift of the IMU that renders systematic differences between strips on the same area. For this, we set up an observation equation for strip-wise adjustments and completed it with tie point and control point coordinates derived from the scanned strips and information from aerial photos. To effectively capture the tie points, we developed a set of procedures that constructs a digital surface model (DSM) with breaklines and then performed feature-based matching on strips resulting in a set of reliable tie points. Solving the observation equations by the least squares method produced a set of affine transformation equations with 6 parameters that we used to transform the strips for adjusting the horizontal error. Experimental results after evaluation of the accuracy showed a root mean squared error (RMSE) of the adjusted strip points of 0.27 m, which is significant considering the RMSE before adjustment was 0.77 m.

  • PDF

Automatic Geometric Calibration of KOMPSAT-2 Stereo Pair Data (KOMPSAT-2 입체영상의 자동 기하 보정)

  • Oh, Kwan-Young;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.191-202
    • /
    • 2012
  • A high resolution satellite imagery such as KOMPSAT-2 includes a material containing rational polynomial coefficient (RPC) for three-dimensional geopositioning. However, image geometries which are calculated from the RPC must have inevitable systematic errors. Thus, it is necessary to correct systematic errors of the RPC using several ground control points (GCPs). In this paper, we propose an efficient method for automatic correction of image geometries using tie points of a stereo pair and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) without GCPs. This method includes four steps: 1) tie points extraction, 2) determination of the ground coordinates of the tie points, 3) refinement of the ground coordinates using SRTM DEM, and 4) RPC adjustment model parameter estimation. We validates the performance of the proposed method using KOMPSAT-2 stereo pair. The root mean square errors (RMSE) achieved from check points (CPs) were about 3.55 m, 9.70 m and 3.58 m in X, Y;and Z directions. This means that we can automatically correct the systematic error of RPC using SRTM DEM.

Coarse to Fine Image Registration of Unmanned Aerial Vehicle Images over Agricultural Area using SURF and Mutual Information Methods (SURF 기법과 상호정보기법을 활용한 농경지 지역 무인항공기 영상 간 정밀영상등록)

  • Kim, Taeheon;Lee, Kirim;Lee, Won Hee;Yeom, Junho;Jung, Sejung;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.945-957
    • /
    • 2019
  • In this study, we propose a coarse to fine image registration method for eliminating geometric error between images over agricultural areas acquired using Unmanned Aerial Vehicle (UAV). First, images of agricultural area were acquired using UAV, and then orthophotos were generated. In order to reduce the probability of extracting outliers that cause errors during image registration, the region of interest is selected by using the metadata of the generated orthophotos to minimize the search area. The coarse image registration was performed based on the extracted tie-points using the Speeded-Up Robust Features (SURF) method to eliminate geometric error between orthophotos. Subsequently, the fine image registration was performed using tie-points extracted through the Mutual Information (MI) method, which can extract the tie-points effectively even if there is no outstanding spatial properties or structure in the image. To verify the effectiveness and superiority of the proposed method, a comparison analysis using 8 orthophotos was performed with the results of image registration using the SURF method and the MI method individually. As a result, we confirmed that the proposed method can effectively eliminated the geometric errors between the orthophotos.