• Title/Summary/Keyword: Tidal range

Search Result 320, Processing Time 0.026 seconds

Water Mass Structure and Dissolved Oxygen Distribution in Chinhae Bay (진해만의 수괴구조와 용존산소 분포)

  • KIM Cha-kyum;LEE Pil-Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.572-582
    • /
    • 1994
  • To investigate water mass structure and DO(Dissolved Oxygen) distribution in Chinhae Bay, temperature, salinity and DO were observed in the bay in summer and winter from 1990 to 1993, and two-dimensional tidal current and parameter log($H/U^3$) were computed. Shallow water fronts in the bay were formed in summer in Kaduk channel and the central part of the bay having log($H/U^3$) values of $2.0{\sim}2.5$. Oxygen deficiency at the bottom layer in summer occurred in the western and northern part of the bay with weak tidal current, where the value of log($H/U^3$) was more than about 3.5 and $M_2$ tidal current was less than about 20 cm/s. DO concentration at the bottom layer of Kaduk channel and the central channel of the bay having the strong tidal current was more than about 3.5 mg/l. The isolines of DO concentration were nearly parallel to the isovelocity, and the concentrations correlated with the frontal location. The frontal location and DO distribution were influenced by tidal range, river inflow and meteorological conditions, and also correlated with bottom slope characteristics.

  • PDF

Comparisons of the Environmental Characteristics of Intertidal Beach and Mudflat

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The characteristics of morphological shapes, wave heights, tidal ranges and sediment sizes are observed and compared between intertidal beach and mudflat. The Mohang sand beach, southwest coast of Korea, is located just next to the large mudflat and has tidal range over 5 meters. Wave measurements are conducted at each entrance of the beach and mudflat as well as at the outside waters representing the incident waves to these different coastal environments. The morphological characteristics are also examined including the sediment size and the slope of the bathymetry, For the observation of morphological shapes, camera monitoring technique is used to measure the spatial information of intertidal bathymetry. The water lines moving on the intertidal flat/beach durinq a flood indicate depth contours between low and high water lines. The water lines extracted from the consecutive images are rectified to get the ground coordinates of each depth contours and integrated to provide three dimensional information of intertidal topography. The wave data show that sand beach is in the condition of severer wave forcing but tidal range is almost identical in both environment. The slope of the mudflat is much milder than the sand beach with finer sediment.

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Impact of the coastal structures on the water circulation near Gusipo coast, Yellow Sea, Korea (서해 구시포 해안에서 해수유동에 미치는 구조물의 영향)

  • Kim, Cha-Kyum;Park, Il Heum
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.865-875
    • /
    • 2022
  • Field measurements and numerical simulations using EFDC model were performed to quantify the changes of water circulation near Gusipo coast located in the Yellow Sea of Korea to estimate the impact of the construction of the coastal structures (jetty, groin, Gusipo port and bridge). The model predicted tide and tidal currents agreed reasonably well with the measurements. The maximum currents during spring tide near the Gusipo Beach (GB) have the range of 20~40 cm/sec whereas those off the GB range from 60 to 80 cm/sec. The typical patterns of tidal current show parallel with the local isobath. Tidal currents flow northeastward during the flood tide whereas the currents during the ebb tide flow southwestward. The current speeds at shielded waters after the construction of coastal structures strongly decreased as compared with those before the construction. The tidal volume due to the construction of coastal structures was estimated using the depth averaged velocity for 24 hours of spring tide. Tidal volume after construction of coastal structures was compared with initial state (before construction). Tidal volume at present state (after construction of jetty, groin, Gusipo port and bridge) decreased by 28.4% as compared with that of the initial state. The volume after construction of jetty and groin decreased by 21.3%, and the volume after construction of Gusipo port and bridge decreased by 9.8%.

Vegetation Distribution and Soil Salinity on Daeho Reclaimed Tidal Land of Kyonggi-Bay in the Mid-West Coast of Korea (우리나라 중서부 서해안 대호 간척지의 식생 분포와 토양 염농도)

  • Kim, Eun-Kyu;Jung, Yeong-Sang;Joo, Young K.;Jung, Hyeung-Gun;Chun, Soul;Lee, Sung-Hun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.447-453
    • /
    • 2009
  • Vegetation distribution and soil salinity were surveyed on the conservation plot in the Daeho reclaimed tidal land, in where the plants species distribution was more various than a periodically inundated tidal flat and the early stage of reclamation. According to the soil salinity where the vegetation patches were occurred, the mono patches of Salicornia europaea, Suaeda maritima, and Suaeda glauca were distributed in the average range of 31.05 dS/m in soil salinity, the mixed patches of them were distributed in the average range of 42.75 dS/m. Therefore, Salicornia europaea, Suaeda maritima, and Suaeda glauca showed strong salt tolerance. The mono patches of Aster tripolium, Sonchus brachyotus, and Scirpus planiculm were distributed in the range of 11.73 dS/m in soil salinity, and the mixed patches were distributed in the average range of 9.43 dS/m. Therefore Aster tripolium, Sonchus brachyotus, and Scirpus planiculmis showed moderate salt tolerance. The mono patches of Imperata cylindrica, Trifolium pratense, Miscanthus sinensis, Setaria viridis, and Trisetum bifidum were distributed in the range of 2.42 dS/m in soil salinity. These species showed characteristics of glycophytes with weak salt tolerance. The distribution of vegetation patches was influenced by the soil salinity as pioneer halophytes patches occurred at higher soil salinity zone than facultative halophytes patches, glycophytes patches occurred at lower soil salinity zone than facultative halophytes. These results suggested that occurrence of plant species and plant distribution type might be useful index to evaluate the soil salinity and desalinization in the reclaimed land of the midwest coastal area of Korea.

Real-Time Flood Forecasting System For the Keum River Estuary Dam(II) -System Application- (금강하구둑 홍수예경보시스템 개발(II) -시스템의 적용-)

  • 정하우;이남호;김현영;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

Development of the Automated Irrigation Management System for Paddy Fields (논 물 관리의 자동화시스템 개발)

  • 정하우;이남호;김성준;최진용;김대식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.67-73
    • /
    • 1994
  • This paper is to validate the proposed models for the real-time forecasting for the Keum river estuary dam such as tidal-level forecasting model, one-dimensional unsteady flood routing model, and Kalman filter models. The tidal-level forecasting model was based on semi-range and phase lag of four tidal constituents. The dynamic wave routing model was based on an implicit finite difference solution of the complete one-dimensional St. Venant equations of unsteady flow. The Kalman filter model was composed of a processing equation and adaptive filtering algorithm. The processng equations are second ordpr autoregressive model and autoregressive moving average model. Simulated results of the models were compared with field data and were reviewed.

  • PDF

Cyclic Change of Phytoplankton Community in Mankyeong River Estuary prior to the Completion of the Saemankeum Seawall (새만금 방조제 완공 이전 만경강 하구역 식물플랑크톤 군집의 주기적인 변동)

  • Kim, Young-Geel;Park, Jong-Woo;Jang, Keon-Gang;Yih, Won-Ho
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Eutrophicated water fed through Mankyeong River and Dongjin River into the new Saemankeum Lakemight seriously affect the water quality and phytoplankton community in the lake. To obtain control reference data for the later studies on environmental changes due to the construction of the Saemankeum Sea Wall, we performed a monthly investigation on the physico-chemical properties of the water and phytoplankton community at 3 stations in the Mankyeong River Estuary over 14 months starting from September 1999. Water temperature ranged from $0.3{\sim}32.9^{\circ}C$ due to the typical seasonal variations in temperate on the coasts and salinity exhibited a wide annual range of $0.2{\sim}33.7$ psu along with regular and huge hourly variations according to tidal cycles. Inorganic nutrients were supplied from rivers to the monitoring station and the whole lake. The average concentration of total-N, $6.99\;mg{\cdot}l^{-1}$, was higher than the water quality for agricultural use with peak values occurring in winter. Species composition showed a seasonal succession pattern, where a high diversity was observedin summer and autumn and vice versa in winter. Hourly variations of water properties in the "Mankyeong bridge" Station were quite regular and well in accordance with the daily tidal cycles. The different degree of sea water intrusion during the flood tide at each of the 3 stations exhibited a different range and variation pattern of water temperature and salinity throughout a day. Hourly changes in species composition were in harmony with the daily tidal cycles, resulting in extremely variable spatio-temporal variation.

Numerical Simulation of Water Level Change at the Coastal Area in the East Sea with the Inverted Barometer Effect (역기압 효과를 반영한 동해 연안 수위 변동 수치 재현)

  • Hyun, Sang Kwon;Kim, Sung Eun;Jin, Jae Yull;Do, Jong Dae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Sea water level variations are generally influenced by a variety of factors such as tides, meteorological forces, water temperature, salinity, wave, and topography, etc. Among non-tidal conditions, atmospheric pressure is one of the major factors causing water level changes. In the East Sea, due to small tidal range which is opposite to large tidal range of the Yellow Sea, it is difficult to predict water level changes using a numerical model, which consider tidal forcing only. This study focuses on the effects of atmospheric pressure variations on sea level predictions along the eastern coast of Korea. Telemac-2D model is simulated with the Inverted Barometer Effect(IBE), and then its results are analyzed. In comparison between observed data and predictions, the correlation of prediction with IBE and tide is better than that of tide-only case. Therefore, IBE is strongly suggested to be considered for the numerical simulations of sea level changes in the East Sea.

Marine Environmental Characteristics of Seagrass Habitat in Seomjin River Estuary (섬진강 하구역 잘피(Z. marina)서식지의 해양환경 특성)

  • Ji, Hyeong-Seok;Seo, Hee-Jeong;Kim, Myeong-Won;Lee, Moon Ock;Kim, Jongkyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-244
    • /
    • 2014
  • This study considered a seagrass habitat in order to analyze the characteristics of a marine environment of seagrass located in the Seomjin river estuary, through an analysis of the distribution of the water depth, field observation, and three-dimensional numerical experiments using an EFDC model. The seagrass habitat was usually distributed at D.L(-) 0.5~0.0 m, and was hardly seen in the intertidal zone higher than that range. The distribution of the water temperature was within the range of $7.0{\sim}23.2^{\circ}C$, and the seagrass was demonstrated to have a strong tolerance to changes in the water temperature. In addition, the salinity distribution was found to be 27.2~31.0 psu, with suspended solids of 32.1 mg/L, which were higher than the previous research results (Huh et al., 1998), implying that there may be a reduction in the amount of deposits caused by the suspended solids. As for the sedimentary facies, they were comprised of 62.7% sand, 19.1% silt, and 18.2% clay, indicating that the arenaceous was superior and the sedimentary facies were similar to that of Dadae Bay. According to a numerical experiment, the maximum tidal current was 75 cm/s, while the tidal residual current was 10 cm/s, confirming that it sufficiently adapted to strong tidal currents. The erosion and deposition are predicted to be less than 1.0 cm/year. Thus, it is judged that the resuspension of sediments due to tidal currents and the changes in sedimentary facies are insignificant.