• Title/Summary/Keyword: Tidal front

Search Result 85, Processing Time 0.026 seconds

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

A Study of Environment-friendly outer wall facilities for the improvement of port pollution (항내오염 개선을 위한 친환경 외곽시설에 관한 연구)

  • 김강민;강석형;유하상;김상훈
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • Due to the impermeability of outer wall facilities such a Breakwaters which dissipates the wave energy and keeps harbor tranquility, the water exchange can be worse and increased enclosed at the harbor. Recent trends of port development protect water quality and emphasize Water-Front, so the method which enhances the circulation of harbor waters and the dilution of the water pollutants are studied. The best improvement of water quality is a remove of pollutant source on land, but an enclosed port must be enhanced the tidal exchange. To this hence, the best improvement may be made on drain-route on the existing outer wall facilities. In this study, the numerical computations were carried out to predict the circulation of harbor waters and the tidal exchange in the polluted harbor(Samchonpo-guhang) located at the east coast of South Sea. Computational models adopting FDM(Finite Difference Method) were used here and were already verified from the previous studies and ocean survey. As a result of this study, the tidal exchange in Samchonpo-guhang before and after installation of drain-route is assessed.

  • PDF

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

Performance Research of Counter-rotating Tidal Stream Power Unit

  • Wei, Xuesong;Huang, Bin;Liu, Pin;Kanemoto, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • An experimental investigation was carried out to improve the performance of a counter-rotating type horizontal-axis tidal stream power unit. Front and rear blades were designed separately based on modified blade element momentum (BEM) theory, and their performances at different conditions of blade tip speed ratio were measured in a wind tunnel. Three different groups of blades were designed successively, and the results showed that Group3 possessed the highest power coefficient of 0.44 and was the most satisfactory model. This experiment shows that properly increasing diameter and reducing chord length will benefit the performance of the blade.

Scouring and accumulation by tidal currents around cubic artificial reefs installed at Geogeom waterway (거금수로에 시설된 사각형 인공어초 주변의 조류에 의한 세굴 퇴적 변화)

  • Kim, Dae-Kweon;Lee, Jin-Young;Suh, Sung-Ho;Kim, Chang-Gil;Cho, Jea-Kwon;Cha, Byung-Yul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1275-1280
    • /
    • 2009
  • Tidal currents were observed at 1 station of artificial reefs group during 15days. Maximum current was 82.4cm/s, and mean current showed 12.8~28.0cm/s, respectively. Flood currents magnitude were bigger than ebb ones due to wake region. To grasp sediment distributions, sediments were sampled at 4-direction(E, W, S, N) around each station. According to the results of sample analysis, sediments showed different distribution by main current direction. It showed that sediments distribution at front and back of artificial reefs were differently occurred by change of main current direction. It suggest that artificial reefs need to install after confirming tidal currents direction and sediments type.

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations (여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험)

  • Kwon, Kyung-Man;Choi, Byoung-Ju;Lee, Sang-Ho;Cho, Yang-Ki;Jang, Chan-Joo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.155-168
    • /
    • 2011
  • Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

Basic Marine Environmental Characteristics of Suspended Sediments in the Inner Shelf Zone off Tae-An Peninsula, West Coast of Korea (한반도 서해 태안반도 연근해 부유퇴적물의 기초 해양환경적 특성)

  • 최진용;박용안
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1996
  • A study on the concentrations of total suspended matters (TSM) and their distribution pattern was conducted off the west coast of Tae-An Peninsula during the spring season. Especially non-destructive and fine-tuned analysis for the size-distribution of suspended matters was made using SPECTREX instrument. Water masses were characterized by the typical tidal front, with vertically homogenous coastal waters and the strong thermoclines on the offshore area. Concentrations of suspended matters were generally less than 10 mg/l, but the concentrations increased up to 25 mg/l at the bottom waters and mid-depth waters. Mean particle size of the suspended matters were generally 5-6$\mu\textrm{m}$ and 8-10$\mu\textrm{m}$ for the fine-grained suspended matters and the coarse-grained suspended matters, respectively. They are considered to be composed dominantly of detrital materials. On the coastal area, landward side of tidal front, bottom sediments can be easily resuspended by the strong tidal currents, and therefore, deposition of suspended materials are thought to be rather limited. On the offshore area, however, suspended sediments mostly supplied from the northern part of the present study area near Kyunggi Bay are thought to be transported southward and/or southwestward along the mid- depth layer of strong thermocline.

Numerical Experiment for the formation of the Yellow Sea cold Water mass (황해저층냉수의 형성에 관한 수치실험)

  • AN, HUI SOO;LEE, HYUN CHUL
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.101-106
    • /
    • 1993
  • A simple three-dimensional cubic model is applied to the formation of the Yellow Sea Cold Water Mass in Summer. We studied how the tidal mixing and the Kuroshio Water Mass affect the formation of the Yellow Sea cold Water. The tidal mixing effect is parameterized into the vertical diffusion coefficient because of the technical difficulties in the numerical model In this study, the thermal front along the coast could be formed only by the tidal mixing effect. However, the southern front of the Yellow Sea Cold Water Mass has to consider the warm Kuroshio water. the resultant shows the opposite temperature distribution in upper layer and lower layer. the center of the model is warmer in the upper layer and colder in the lower layer than the coast. The resultant circulation pattern is also reverse, clockwise circulation in the upper layer and counter-clockwise circulation in the lower layer.

  • PDF

Structure and Variation of the Keum River Plume in Summer (하계 금강 Plume의 구조와 변동)

  • 이상호;최현용
    • 한국해양학회지
    • /
    • v.30 no.2
    • /
    • pp.125-137
    • /
    • 1995
  • CTD, light transmission and tidal current data obtained off the Keum estuary in August, 1991 and 1992 were analyzed to look into the plume movement and the vertical structure of the plume changing with tidal currents. When the river plume was developed by a localized torrential downpour, the initial plume showed a surface lens of low salinity in the section south of the Yeon-Do. The axis of surface lens moved with tidal currents which flows mainly northeastward and southwestward tn the study area and the excursion of the lens axis reached 7 km. The plume during the ebb period showed a symmetric lens structure of low salinity which extends vertically to 3 m below the surface. During the flood period the plume deepened to 6 m below the surface in its northen side forming a sharp salinity front, which results in an asymmetric lens. We suggest that the salinity front with deepened plume moved to the north repeatedly, resulting in temperature increase and salinity decrease in the northern region off the estuary. When the river discharged continuously the large volume over 20 days, the plume forming surface lens extended to the Sybidongpa-Do and deflected to the north.

  • PDF