DOI QR코드

DOI QR Code

Coastal Current Along the Eastern Boundary of the Yellow Sea in Summer: Numerical Simulations

여름철 황해 동부 연안을 따라 흐르는 연안 경계류: 수치 모델 실험

  • Kwon, Kyung-Man (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University) ;
  • Choi, Byoung-Ju (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University) ;
  • Lee, Sang-Ho (Department of Oceanography, College of Ocean Science and Technology, Kunsan National University) ;
  • Cho, Yang-Ki (School of Earth and Environmental Sciences, Seoul National University) ;
  • Jang, Chan-Joo (Climate Change & Coastal Disaster Research Department, KORDI)
  • 권경만 (군산대학교 해양과학대학 해양학과) ;
  • 최병주 (군산대학교 해양과학대학 해양학과) ;
  • 이상호 (군산대학교 해양과학대학 해양학과) ;
  • 조양기 (서울대학교 지구환경과학부) ;
  • 장찬주 (한국해양연구원 기후변화연안재해연구부)
  • Received : 2011.07.06
  • Accepted : 2011.11.09
  • Published : 2011.11.30

Abstract

Coastal boundary current flows along the eastern boundary of the Yellow Sea and its speed was about 0.l m/s during the summer 2007. In order to find major factors that affect the coastal boundary current in the eastern Yellow Sea, three-dimensional numerical model experiments were performed. The model simulation results were validated against hydrographic and current meter data in the eastern Yellow Sea. The eastern boundary current flows along the bottom front over the upper part of slopping bottom. Strength and position of the current were affected by tides, winds, local river discharge, and solar radiation. Tidal stirring and surface wind mixing were major factors that control the summertime boundary currents along the bottom front. Tidal stirring was essential to generate the bottom temperature front and boundary current. Wind mixing made the boundary current wider and augmented its north-ward transport. Buoyancy forcing from the freshwater input and solar radiation also affected the boundary current but their contributions were minor. Strong (weak) tidal mixing during spring (neap) tides made the northward transport larger (smaller) in the numerical simulations. But offshore position of the eastern boundary current's major axis was not apparently changed by the spring-neap cycle in the mid-eastern Yellow Sea due to strong summer stratification. The mean position of coastal boundary current varied due to variations in the level of wind mixing.

여름철 황해 동부 연안 저층에 형성되는 수온전선을 따라 북쪽으로 흐르는 연안 경계류의 크기와 위치에 영향을 주는 요소들을 3차원 수치모형인 ROMS를 이용하여 살펴보았다. 여름에 수심이 깊은 외해에서는 태양 가열로 강한 성층에 존재하지만 수심이 얕은 연안에서는 조류가 일으키는 저층 혼합으로 해수물성이 연직으로 잘 혼합된다. 이 과정에서 성층화된 외해와 연직 혼합이 잘되고 수온이 높은 연안 사이에서 수온전선이 형성되며, 수온전선을 가로 지르는 방향의 밀도 구배에 의해 수온전선을 따라 북쪽으로 흐르는 연안 경계류가 발생함을 확인하였다. 해류계를 이용한 현장 관측에서도 약 10 cm/s로 북상하는 연안 경계류가 관측되었다. 이러한 수온전선을 따라 북쪽으로 흐르는 연안 경계류는 주로 조류와 바람의 영향을 크게 받는다. 조류에 의한 저층 혼합과 바람에 의한 표층 혼합이 여름철 황해 동부 경계류에 가장 큰 영향을 주는 요소다. 바람에 의한 표층 혼합은 북쪽으로 흐르는 황해 동부 연안 경계류의 폭을 더 넓게 하여 수송량을 증가시킨다. 강물의 유입과 일사량의 변화는 연안 경계류의 세기와 위치 변화에 큰 영향을 주지 않는다. 성층이 강하게 이루어지는 여름철 황해 동부 연안 $36^{\circ}N$에서는 대조기(소조기) 동안 강한(약한) 조류가 북쪽으로 흐르는 해류의 수송량을 증가(감소)시키지만, 동안 경계류의 위치를 크게 변화시키지는 않는다. 연안 경계류의 평균적인 위치는 바람의 세기 변화에 따라 변화하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. 국립해양조사원, 2007. 해양조사기술연보 2007.
  2. 최병호, 1990. 세격자체계의 황해 및 동지나해 조석모형의 개발, 한국해양공학회지, 2: 231-244
  3. Beardsley, R.C., R. Limeburner, K. Kim, and J. Candela, 1992. Lagrangian flow observations in the East China Sea, Yellow and Japan Seas. La Mer, 30: 297-314.
  4. Bowers, D.G, J.H. Simpson, 1987. Mean position oftidal fronts in Europen-shelf seas. Cont. Shelf Res., 7: 35-44.
  5. Chen, C. and R.C. Beardsley, 1995. A numerical study of stratified tidal rectification over [mite-amplitude banks, I, Symmetric banks. J. Phys. Oceanogr., 25: 2090-2110. https://doi.org/10.1175/1520-0485(1995)025<2090:ANSOST>2.0.CO;2
  6. Chen, C., R.C. Beardsley, and R. Limeburner, 1995. A numerical study of stratified tidal rectification over finite-amplitude banks, II, Georges Bank. J. Phys. Oceanogr., 25: 2111-2128. https://doi.org/10.1175/1520-0485(1995)025<2111:ANSOST>2.0.CO;2
  7. Cho, Y.K., B.H. Choi, and H.W. Chung, 1995. Variation oftidal front in the southwestern sea of Korea. J. Korean Soc. Coast. ocean Eng., 7: 170-175.
  8. Choi, J.K., 1991. The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of Yellow Sea. J. Oceano. Soc. Korean, 26: 223-241.
  9. Egbert, GD., and S.Y. Erofeeva, 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmo. Ocean. Technol., 19: 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  10. Fairall, C.w., E.F. Bradley, D.P. Rogers, J.B. Edson, and GS. Young, 1996. Bulk parameterization of air-sea fluxes in TOGA COARE. J. Geophys. Res., 101: 3747-3767. https://doi.org/10.1029/95JC03205
  11. Huthnance, J.M., 1973. Tidal current asymmetries over the Norfolk sandbanks. Estuarine, Coastal Mar. Sci., 1: 89-99. https://doi.org/10.1016/0302-3524(73)90061-3
  12. James, I.D., 1977. A model of the annual cycle of temperature in a frontal region of the Celtic Sea. Estuarine, Coastal Mar. Sci., 5: 339-353. https://doi.org/10.1016/0302-3524(77)90061-5
  13. Lie, HJ, 1989. Tidal fronts in the southern Hwanghae (Yellow Sea), Cont. Shelf Res., 9: 527-546. https://doi.org/10.1016/0278-4343(89)90019-8
  14. Lee, S.H., and R.C. Beardsley, 1999. Infuence of stratification on residual tidal currents in the Yellow Sea. J. Geophy. Res., 104: 15679-15701. https://doi.org/10.1029/1999JC900108
  15. Lee, S.H., and H.Y. Choi, 1997. A numerical model study of residual tidal currents in the mid-eastern Yellow Sea - initial stratification. The Yellow Sea, 3: 58-70.
  16. Naimie, C.E., C.A. Blain, and D.R. Lynch, 2001. Seasonal mean circulation in the Yellow Sea: A model-generated climatology. Cont. Shelf Res., 21: 667-695. https://doi.org/10.1016/S0278-4343(00)00102-3
  17. Niino, H. and K. O. Emery, 1961. Sediments of shallow portions of East China Sea and South China Sea. Geol. Soc. Amer. Bull., 72: 731-762. https://doi.org/10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2
  18. Pingree, R.D., P.M. Holligan, and G.T. Mardell, 1978. The effects of vertical stability on phytoplankton distributions in the summer on the northwest European shelf. Deep Sea Res., 25: 1011−1028. https://doi.org/10.1016/0146-6291(78)90584-2
  19. Seo, G.- H., S. Kim, B.-J. Choi, Y.-K. Cho, and Y.-H. Kim, 2009. Implementation of the Ensemble Kalman Filter into a Northwest Pacific Ocean Circulation Model, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. edited by S.K. Park and L. Xu, Springer, Berlin, pp. 341−352.
  20. Seo, S.N., 2008. Digital 30sec Gridded Bathymetric Data of Korea Marginal Seas - KorBathy30s. J. Korean Soc. Coast. ocean Eng., 20: 110−120.
  21. Seung, Y.H., 1987. A summer circulation inferred from the density (temperature) distribution in the eastern Yellow Sea. J. Ocean. Soc. of Korea, 22: 63−70.
  22. Seung, Y.H., J.H. Chung, and Y.C. Park, 1990. Oceanographic studies related to the tidal front in the mid-Yellow Sea off Korea. J. Oceanol. Soc. Korea, 28: 121−131.
  23. Shchepetkin, A.F. and J.C. McWilliams, 2000. The regional ocean modeling system: a split-explicit, free surface, topography-following coordinate ocean model. Geophy. and Planet. Phy. UCLA, Los Angeles, CA, 31 pp.
  24. Simpson, J.H., and J.R. Hunter, 1974. Fronts in the Irish Sea. Nature, 250: 404−406. https://doi.org/10.1038/250404a0
  25. Simpson J.H., C.M. Allen and N.C.G. Morris, 1978. Fronts on the continental shelf. J. Geophys. Res., 83: 4607-4614. https://doi.org/10.1029/JC083iC09p04607
  26. Simpson J.H. and D. Bowers, 1979. Shelf sea fronts' adjustment revealed by satellite IR imagery. Nature, 280: 648−651. https://doi.org/10.1038/280648a0
  27. Simpson J.H. and D. Bowers, 1981. Models of stratification and frontal movement in shelf seas. Deep Sea Res., 28: 727−738. https://doi.org/10.1016/0198-0149(81)90132-1
  28. Simpson J.H., P.B. Tett, M.L. Argote-Espinoza, A. Edwards. K.J. Jone and G. Savidge, 1982. Mixing and phytoplankton groth around an island in a stratified sea. Cont. shelf Res., 1: 15−31. https://doi.org/10.1016/0278-4343(82)90030-9
  29. Song, Y., and D.B. Haidvogel, 1994. A semi-implicit ocean circulation model using a generalized topography-fllowing coordinate system. J. Comput. Physic. 115: 228−244. https://doi.org/10.1006/jcph.1994.1189
  30. Sun, Y.-J., and Y.-K. Cho, 2010. Tidal front and its relation to the biological process in coastal water. Ocean Sci. J. 45: 243−251. https://doi.org/10.1007/s12601-010-0022-3
  31. Uda, M., 1934. The results of simultaneous oceanographical investigations in the Japan Sea and its adjacent waters in May and June, 1932. J. Imperial Fishery Experimental Station, 5: 57−190.
  32. Xia, C., F. Qiao, Y. Yang, J. Ma, and Y. Yuan, 2006. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res., 111: C11S03, doi:10.1029/2005JC003218.
  33. Yanagi, T., A. Morimoto, and K. Ichikawa, 1997. Sesonal variation in surface circulation of the East China Sea and the Yellow Sea derived from satellite altimetric data. Cont. Shelf Res., 17: 655−644. https://doi.org/10.1016/S0278-4343(96)00054-4
  34. Yanagi, T., and S. Takahashi, 1993. Seasonal Variation of Circulations in the East China Sea and the Yellow Sea. J. Oceanorg., 49: 503−520. https://doi.org/10.1007/BF02237458
  35. Yang, J.Y., 2006. Path variablity of the Changjiang Diluted Water in summer. Ph. D. Thesis, Seoul National University, Seoul, 99 pp.
  36. Yuan, Y.C., and J. Su, 1984. Numerical modelling of the circulation in the East China Sea. In: Ichiye, T. (Dd.), Ocean Htdrodynamics of the Japan and East China Seas. Oceanography Series, 39, Elsevier, Amsterdam, pp. 167−186.

Cited by

  1. Effect of model error representation in the Yellow and East China Sea modeling system based on the ensemble Kalman filter vol.66, pp.2, 2016, https://doi.org/10.1007/s10236-015-0909-8
  2. Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea vol.18, pp.1, 2013, https://doi.org/10.7850/jkso.2013.18.1.1
  3. Assimilating OSTIA SST into regional modeling systems for the Yellow Sea using ensemble methods vol.36, pp.3, 2017, https://doi.org/10.1007/s13131-017-0978-2
  4. Sensitivity of Simulated Water Temperature to Vertical Mixing Scheme and Water Turbidity in the Yellow Sea vol.18, pp.3, 2013, https://doi.org/10.7850/jkso.2013.18.3.111
  5. Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula vol.39, pp.6, 2018, https://doi.org/10.5467/JKESS.2018.39.6.555
  6. A Fine Grid Tide-Wave-Ocean Circulation Coupled Model for the Yellow Sea: Comparison of Turbulence Closure Schemes in Reproducing Temperature Distributions vol.9, pp.12, 2011, https://doi.org/10.3390/jmse9121460