• Title/Summary/Keyword: TiO2 layers

Search Result 363, Processing Time 0.028 seconds

Dispersion Characteristics of α-Fe2O3 Nanopowders Coated with Titanium Dioxide by Atomic Layer Deposition

  • Ok, Hae Ryul;Lee, Bo Kyung;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • A $TiO_2$ nanofilm was deposited on ${\alpha}-Fe_2O_3$ nanopowders using the atomic layer deposition method. The $TiO_2$ film was prepared at $300^{\circ}C$ using $Ti(N(CH_3)_2)_4$ and $H_2O$ as the precursor and reactant gas, respectively. The thickness and composition of the $TiO_2$ surface were characterized by TEM and EDS measurements. The TEM results showed that the growth rate of the film was about $0.12{\AA}/cycle$. The EDS and SAED analyses showed the presence of titanium oxide on the surface of the ${\alpha}-Fe_2O_3$ nanopowders, confirming the deposition of the $TiO_2$ nanofilm. The Zeta potential and sedimentation test results showed that the dispersibility of the coated nanopowders was higher than that of the uncoated nanopowders. This is attributed to the electrostatic repulsion between the $TiO_2$-coated layers on the surface of the ${\alpha}-Fe_2O_3$ nanopowders. The results revealed that the $TiO_2$-coated layers modified the surface characteristics of the ${\alpha}-Fe_2O_3$ nanopowders and improved their dispersibility.

Powder Chracteristics and Sintering Behavior of $SiO_2$ Coated $BaTiO_3$

  • Park, Jae-Sung;Han, Young-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1097-1098
    • /
    • 2006
  • The Powder characteristics and sintering behavior of $SiO_2$ coated $BaTiO_3$ were studied. Silica coated $BaTiO_3$ powders were prepared by sol-gel method. The particle size of the $BaTiO_3$ powders were $\sim35$ nm and the thickness of the $SiO_2$ coating layer was $\sim5$ nm. As the $SiO_2$ content increased, the $SiO_2$ layers improved the powder dispersion. The Zeta potential of $SiO_2$ coated $BaTiO_3$ was getting close to that of pure silica with a more negative charge, compared with that of the uncoated $BaTiO_3$. The onset temperature of shrinkage curves shifted to higher temperatures with increasing $SiO_2$ contents

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

A Comparison Study on Quantum Dots Light Emitting Diodes Using SnO2 and TiO2 Nanoparticles as Solution Processed Double Electron Transport Layers (용액공정 기반 SnO2와 TiO2를 이중 전자수송층으로 적용한 양자점 전계 발광소자의 특성비교 연구)

  • Shin, Seungchul;Kim, Suhyeon;Jang, Seunghun;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.69-72
    • /
    • 2020
  • In this study, the inverted structured electroluminescence (EL) devices were fabricated with double electron transport layers (ETLs). The conduction band minimum (CBM) of TiO2 NPs is lower than SnO2 NPs. Therefore, it is expected that inserting TiO2 NPs between the SnO2 layer and the emission layer (EML) will reduce the energy barrier and transport electrons smoothly. The quantum dot light emitting diodes (QLEDs) with double ETLs showed the enhanced emission characteristics than those with only SnO2 layer.

Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films (이종 접합 구조를 갖는 TiO2/WO3 이중 박막의 광유기 친수 특성)

  • Oh, Ji-Yong;Lee, Byung-Roh;Kim, Hwa-Min;Lee, Chang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.715-720
    • /
    • 2015
  • The photoinduced hydrophilicity of $TiO_2/WO_3$ double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the $TiO_2$ surface was enhanced by the presence of $WO_3$ under the $TiO_2$ layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the $TiO_2$ and $WO_3$ layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between $TiO_2$ and $WO_3$ layers. It was also demonstrated that visible light passing through the $TiO_2$ layer could excite $WO_3$. Thus, visible light can be used for the hydrophilic reaction in the present $TiO_2/WO_3$ system.

Prediction of the optical properties of $TiO_2$/Ag/$TiO_2$ films using transfer matrix and comparisions with real transmittance measured on the sputter-deposited films (Transfer Matrix를 사용하여 예측한 $TiO_2$/Ag/$TiO_2$ 박막의 광학적 성질 및 스퍼터 증착된 박막과의 특성 비교)

  • Kim, Jin-Il;Kim, Jin-Hyeon;Kim, Yeong-Hwan;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.140-148
    • /
    • 1995
  • Optical properties of $TiO_{2}$. Ag filrns and $TiO_{2}/Ag/TiO_{2}$ multilayer filrns with different thickness were predicted using the transfer matrix, and these results were compared with real transmittance curves of the sputterdeposited films. With the complex refractive indices, it was possible to predict transmittance characteristics which were close to real data for $TiO_{2}$ and Ag films. Due to the diffusion and agglomeration of Ag during $TiO_{2}$ deposition, optical properties of the sputterdeposited $TiO_{2}/Ag/TiO_{2}$ films were found to be very different from the transmittance curves predicted using the transfer matrix. Using deposition of 4nm-thick or 6nm-thick TI layers as a diffusion barrier, however, the transmittance curves of $TiO_{2}/Ti/Ag/Ti/TiO_{2}$ five-layer films became similar to ones predicted for $TiO_{2}/Ag/TiO_{2}$ threeiayer films.

  • PDF

A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment (IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구)

  • Hong, Sukhwa;Cho, Kangwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

The interfacial properties of th eanneled SiO$_{2}$/TiW structure (열처리된 SiO$_{2}$/TiW 구조의 계면 특성)

  • 이재성;박형호;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.117-125
    • /
    • 1996
  • The variation of the interfacial and the electrical properties of SiO$_{2}$TiW layers as a function of anneal temperature was extensively investigated. During the deposition of SiO$_{2}$ on TiW chemical bonds such as SiO$_{2}$, TiW, WO$_{3}$, WO$_{2}$ TiO$_{2}$ Ti$_{2}$O$_{5}$ has been created at the SiO$_{2}$/TiW interface. At the anneal temperature of 300$^{\circ}C$, WO$_{3}$ and TiO$_{2}$ bonds started to break due to the reduction phenomena of W and Ti and simultaneously the metallic W and Ti bonds started to create. Above 500$^{\circ}C$, a part of Si-O bonds was broken and consequently Ti/W silicide was formed. Form the current-voltage characteristics of Al/Sico$_{2}$(220$\AA$)/TiW antifuse structure, it was found that the breakdown voltage of antifuse device wzas decreased with increasing annealing temperature for SiO$_{2}$(220$\AA$)/TiW layer. When r, the insulating property of antifuse device of the deterioration of intermetallic SiO$_{2}$ film, caused by the influw of Ti and W.W.

  • PDF

Blocking Layers Deposited on TCO Substrate and Their Effects on Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Yoo, Beom-Hin;Kim, Kyung-Kon;Lee, Doh-Kwon;Kim, Hong-Gon;Kim, Bong-Soo;Park, Nam-Gyu;Ko, Min-Jae
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • In this review, we have investigated the effect of $TiO_2$-based blocking layers (t-BLs), deposited on a transparent conductive oxide (TCO)-coated glass substrate, on the photovoltaic performance of dye-sensitized solar cells (DSSCs). The t-BL was deposited using spin-coating or sputtering technique, and its thicknesses were varied to study the influence of the thin $TiO_2$ layer in between transparent conducting glass and nanocrystalline $TiO_2$ (nc-$TiO_2$). The DSSC with the t-BL showed the improved adhesion and the suppressed charge recombination at a TCO glass substrate than those without the t-BL, which led to the higher conversion efficiency.