

Powder Chracteristics and Sintering Behavior of SiO₂ Coated BaTiO₃

Jae Sung Park^{1,a} and Young Ho Han^{1,b}

¹Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Korea

^aeclman@samsung.com, ^bCorresponding author: yhhan@skku.ac.kr

Abstract

The Powder characteristics and sintering behavior of SiO_2 coated $BaTiO_3$ were studied. Silica coated $BaTiO_3$ powders were prepared by sol-gel method. The particle size of the $BaTiO_3$ powders were ~35 nm and the thickness of the SiO_2 coating layer was ~5 nm. As the SiO_2 content increased, the SiO_2 layers improved the powder dispersion. The Zeta potential of SiO_2 coated $BaTiO_3$ was getting close to that of pure silica with a more negative charge, compared with that of the uncoated $BaTiO_3$. The onset temperature of shrinkage curves shifted to higher temperatures with increasing SiO_2 contents

Keywords: BaTiO₃, SiO₂, Nano, Coating, Zeta potential

1. Introduction

Ferroelectric BaTiO₃ is the material of choice for multilayer ceramic capacitor (MLCC) manufacturing. To fabricate thinner dielectric layers for increasing volume efficiency, nano-sized BaTiO₃ powders are essentially required. As the BaTiO₃ particle size gets smaller, the uniform distribution of additives becomes more difficult. Chemical coating techniques are effective in enhancing the uniform distribution of additives along the grain boundaries. The advantages of coating methods include improvements in the dispersability of powders, the introduction of a uniform incorporation of additives and microstructure control [1-2]. Hence, various coating techniques have been developed [3-5]. SiO₂ coating is an important way to improve the sintering behavior of BaTiO₃ powders because SiO_2 is known to be an effective sintering aid [6]. The sol-gel method is widely used to form a silica layer coating on powders using silicon alkoxides. In this paper, the effects of silica coating on the powder characteristics and sintering behavior of nano sized BaTiO₃ powders will be discussed.

2. Experimental and Results

Nano sized BaTiO₃ powders were prepared using the liquid mix method developed by Pechini [7]. The silica coating on barium titanate powders was achieved via sol-gel method and the amount of SiO_2 addition was 0.5 and 5.0 wt%.

The primary BaTiO₃ particles were heavily agglomerated with uniform particle sizes of about 30~50nm. The average size of BaTiO₃ particles was observed to be about 35nm. Figure 1 show TEM micrographs of bare BaTiO₃ powders and SiO₂ coated BaTiO₃. The thickness of the SiO₂ coating layer was about 5nm. The uniform coating of silica on

 $BaTiO_3$ was formed by hydrolysis and condensation reactions of TEOS.

Fig. 1. TEM image of uncoated (a) and 5.0wt% SiO_2 coated $BaTiO_3(b)$.

Figure 2 shows zeta potentials of BaTiO₃, SiO₂ and SiO₂ coated BaTiO₃ powders as a function of pH value. Above pH 3.0, the zeta potentials of SiO₂ coated BaTiO₃ powders are more negative than the uncoated BaTiO₃. This confirms that the surface of BaTiO₃ particles was coated by SiO₂ layers, which caused the change of the surface characteristics of BaTiO₃ powders and improved the dispersion of BaTiO₃ primary particles. The disappearance of powder agglomeration with increasing SiO₂ content is thus believed to be due to the increase in electrostatic repulsions between the coated SiO₂ layers on the surface of the BaTiO₃ particles.

Figure 3 exhibits the shrinkage curves of $BaTiO_3$ as a function of temperature for various silica contents. The SiO_2 coated $BaTiO_3$ powders began to shrink at higher temperatures than the uncoated $BaTiO_3$. The SiO_2 coating layer could prevent $BaTiO_3$ particles from contacting directly, resulting in higher sintering temperatures. Dukhin et al. reported a deactivated sintering by the coating of particles [8].

Fig. 2. Zeta potentials of BaTiO₃, SiO₂ and SiO₂ coated BaTiO₃ as a function of the pH value.

Fig. 3. Shrinkage curves of $BaTiO_3$ and SiO_2 coated $BaTiO_3$.

Fig. 4. Microstructures of BaTiO₃ and SiO₂ coated BaTiO₃ with various sintering temperatures.
1: Uncoated BaTiO₃, 2: 0.5% SiO₂ coating, 3: 5.0% SiO₂ coating A: 1150°C, B: 1200°C, C: 1250°C

Figure 4 shows the microstructures of uncoated and SiO₂ coated BaTiO₃ sintered at 1150, 1200 and 1250°C. The uncoated and 0.5 wt% SiO₂ coated BaTiO₃ samples made some densification at 1150°C and the average grain sizes increased with increasing sintering temperature. However, the specimen with 5.0 wt% SiO₂ exhibited poor densification and small grains up to 1200°C. At 1250°C, the microstructure of 5.0 wt% SiO₂ developed exaggerated grain growths. It was reported that the dominant mechanism for the exaggerated grain growth in the BaTiO₃ and SiO₂ system is Ostwald ripening due to the formation of inter-granular SiO₂ rich liquid phases [9].

3. Summary

BaTiO₃ powders were prepared by the Pechini process and coated with silica by the sol-gel process. The zeta potential of the SiO₂ coated BaTiO₃ is more negative than the uncoated BaTiO₃. The zeta potentials of 5.0 wt% SiO₂ coated BaTiO₃ approached that of pure SiO₂ particles. As the SiO₂ content was increased, powder dispersion improved due to the electrostatic repulsion between the coated silica layers on the surface of BaTiO₃ particles. The onset temperature of shrinkage curves is dependent on SiO₂ contents and shifts to higher temperatures with increasing SiO₂ because the SiO₂ coating layer prevents the direct contact between BaTiO₃ particles and retards the sintering rate at lower temperatures.

4. References

- 1. E. Liden, L. Bergstrom, M. Persson, R. Carlson : J. Eur. Ceram. Soc. Vol. 7 (1991), p. 361
- 2. J. S. Park and Y. H. Han : Ceram. Int. Vol. 31 (2005), p. 777
- F.A. Selmi and V.R.W. Amamrakoon : J. Am. Ceram. Soc. Vol. 71 (1988), p. 934
- S.F. Wang and G.O. Dayton : J. Am. Ceram. Soc.Vol. 82 (1999), p. 2677
- S.A. Bruno, D.K. Swanson, and I. Burn : J. Am. Ceram. Soc. Vol. 76 (1993), p. 1233
- 6. D.E. Rase and R. Roy : J. Am. Ceram. Soc. Vol. 38 (1955), p. 389
- 7. M.P. Pechini, U.S. Patent 3,330,697 (1967)
- S. S. Dukhin, J. Yang, R. N. Dave and R. Pfeffer : Colloids Surf. Vol. A235 (2004), p. 83
- 9. J.M. Saldana, B. Mullier and G.A. Schneider : J. Eur. Ceram. Soc. Vol. 22 (2002), p. 681