Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.11.715

Photoinduced Hydrophilicity of Heterogeneous TiO2/WO3 Double Layer Films  

Oh, Ji-Yong (Department of Electronic and Electrical Engineering, Catholic University of Daegu)
Lee, Byung-Roh (Department of Physics, Kyung Hee University)
Kim, Hwa-Min (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu)
Lee, Chang-Hyun (Department of Electronic and Electrical Engineering, Catholic University of Daegu)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.11, 2015 , pp. 715-720 More about this Journal
Abstract
The photoinduced hydrophilicity of $TiO_2/WO_3$ double layer films was fabricated by using a conventional rf-magnetron sputtering method. The photoinduced hydrophilic reaction of the $TiO_2$ surface was enhanced by the presence of $WO_3$ under the $TiO_2$ layer by irradiation of a 10 W cylindrical fluorescent light bulb. However, when the $TiO_2$ and $WO_3$ layers were separated by an insulating layer, the surface did not appeared high hydrophilic, under the same light bulb. The enhanced photoinduced hydrophilic reaction can be explained by the charge transfer between $TiO_2$ and $WO_3$ layers. It was also demonstrated that visible light passing through the $TiO_2$ layer could excite $WO_3$. Thus, visible light can be used for the hydrophilic reaction in the present $TiO_2/WO_3$ system.
Keywords
$TiO_2$; $WO_3$; Double layer; Photo induced hydrophilicity; Indoor lights;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Martin, G. Solana, V. Rives, G. Marci, L. Palmisano, and A. Sclafami, J. Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200373]   DOI
2 Y. T. Kwon, K. Y. Song, W. I. Lee, G. J. Choi, and Y. R. Do, J. Catal., 191, 192 (2000). [DOI: http://dx.doi.org/10.1006/jcat.1999.2776]   DOI
3 K. Y. Song, M. K. Park, Y. T. Kwon, H. W. Lee, W. J. Chung, and W. I. Lee, Chem. Mater., 13, 2349 (2001). [DOI: http://dx.doi.org/10.1021/cm000858n]   DOI
4 G. Marci, L. Palmisano, A. Sclafani, A. M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. J. Solana, Chem. Soc. Faraday Trans., 92, 819 (1996). [DOI: http://dx.doi.org/10.1039/ft9969200819]   DOI
5 I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 145, 3981 (1998). [DOI: http://dx.doi.org/10.1149/1.1838902]   DOI
6 I. Shiyanovskaya and M. Hepel, J. Electrochem. Soc., 146, 243 (1999). [DOI: http://dx.doi.org/10.1149/1.1391593]   DOI
7 M. Callies, Y. Chen, F. Marty, A. Pepin, and D. Quere, Microelectron. Eng., 78, 100 (2005). [DOI: http://dx.doi.org/10.1016/j.mee.2004.12.093]   DOI
8 B. Bhushan, Y. C. Jung, and K. Koch, (Phil. Trans. R. Soc. A, 367, 2009) p. 1631. [DOI: http://dx.doi.org/10.1098/rsta.2009.0014]   DOI
9 R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and H. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x]   DOI
10 M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Chem. Mater., 14, 2812 (2002). [DOI: http://dx.doi.org/10.1021/cm020076p]   DOI
11 K. Ishibashi, Y. Nosaka, K. Hashimoto, and A. Fujishima, J. Phys. Chem. B, 102, 2117 (1998). [DOI: http://dx.doi.org/10.1021/jp973401i]   DOI
12 K. Ikeda, R. Baba, K. Hashimoto, and A. Fujishima, J. Phys. Chem., 101, 2617 (1997). [DOI: http://dx.doi.org/10.1021/jp9627281]   DOI
13 N. Sakai, A. Fuhishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 105, 3023 (2001). [DOI: http://dx.doi.org/10.1021/jp003212r]   DOI
14 K. Honda and A. Fujishim, Nature, 238, 37 (1972). [DOI: http://dx.doi.org/10.1038/238037a0]   DOI
15 A. Heller, Acc. Chem. Res., 28, 141 (1995). [DOI: http://dx.doi.org/10.1021/ar00060a006]   DOI
16 A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: http://dx.doi.org/10.1021/cr00035a013]   DOI
17 A. Fujishima, K. Hashimoto, and T. Watanabe, Fundamentals and Applications (BKC, Inc., 1999) p. 14.
18 T. Kawai and T. Sakata, Nature, 286, 474 (1980). [DOI: http://dx.doi.org/10.1038/286474a0]   DOI
19 I. Rosenberg, Brock, and A. J. Heller, Phys. Chem., 96, 3523 (1992). [DOI: http://dx.doi.org/10.1021/j100196a061]   DOI
20 A. Mills and S.L.J. Hunte, Photochem Photobiol A Chem., 108, 1 (1997). [DOI: http://dx.doi.org/10.1016/S1010-6030(97)00118-4]   DOI
21 R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature, 388, 431 (1997). [DOI: http://dx.doi.org/10.1038/41233]   DOI
22 R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater., 10, 135 (1998). [DOI: http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M]   DOI
23 N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Langmuir, 14, 5918 (1998). [DOI: http://dx.doi.org/10.1021/la980623e]   DOI
24 R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B, 103, 2188 (1999). [DOI: http://dx.doi.org/10.1021/jp983386x]   DOI
25 T. Watanabe, A. Nakajima, R. Wang, Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto, Thin Solid Films, 351, 260 (1999). [DOI: http://dx.doi.org/10.1016/S0040-6090(99)00205-9]   DOI
26 M. Miyauchi, A, Nakajima, A, Fujishima, K, Hashimoto, and T. Watanabe, Chem. Mater., 12, 3 (2000). [DOI: http://dx.doi.org/10.1021/cm990556p]   DOI
27 A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications (BKC Inc., Tokyo, Japan, 1999).
28 N. Serpone, E. Borgarello, and M. J. Gratzel, Chem. Soc., Chem. Commun., 342 (1984). [DOI: http://dx.doi.org/10.1039/c39840000342]   DOI
29 N. Serpone, P, Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 85, 247 (1995). [DOI: http://dx.doi.org/10.1016/1010-6030(94)03906-B]   DOI
30 I. Bedja and P. V. Kamat, J. Phys. Chem., 99, 9182 (1995). [DOI: http://dx.doi.org/10.1021/j100022a035]   DOI
31 A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, J. Electro Chem. Soc., 147, 2279 (2000). [DOI: http://dx.doi.org/10.1149/1.1393521]   DOI
32 H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 104, 4585 (2000). [DOI: http://dx.doi.org/10.1021/jp000049r]   DOI
33 Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, and J. Yao, Chem. Mater., 12, 3445 (2000). [DOI: http://dx.doi.org/10.1021/cm0004432]   DOI
34 L. Shi, C. Li, H. Gu, and D. Fang, Mater. Chem. Phys., 62, 62 (2000). [DOI: http://dx.doi.org/10.1016/S0254-0584(99)00171-6]   DOI
35 A. D. Paola, L. Palmisano, A. M. Venezia, and V. J. Augugliaro, Phys. Chem. B, 103, 8236 (1999). [DOI: http://dx.doi.org/10.1021/jp9911797]   DOI
36 G. Marci, V. Augugliaro, M. J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A. M Venezia, J. Phys. Chem. B, 105, 1026 (2001). [DOI: http://dx.doi.org/10.1021/jp003172r]   DOI
37 Y. R. Do, W. Lee, K. Dwight, and A. Wold, J. Solid State Chem., 108, 198 (1994). [DOI: http://dx.doi.org/10.1006/jssc.1994.1031]   DOI