• 제목/요약/키워드: TiO₂nanoparticles

검색결과 418건 처리시간 0.045초

A Convenient Method to Prepare Ag Deposited N-TiO2 Composite Nanoparticles via NH3 Plasma Treatment

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2309-2314
    • /
    • 2012
  • Ag deposited N-$TiO_2$ composite nanoparticles were prepared via $NH_3$ plasma treatment. X-ray diffraction, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The plasma treatment did not change the phase composition and particle sizes of $TiO_2$ samples, but extended its absorption edges to the visible light region. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of Ag deposited N-$TiO_2$ composite nanoparticles were much higher than Ag-$TiO_2$, N-$TiO_2$, and P25. A possible mechanism for the photocatalysis was proposed.

염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향 (Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 유재현;지명준;박우영;이영인
    • 한국분말재료학회지
    • /
    • 제26권3호
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.

염 보조 초음파 분무 열분해법을 이용한 TiO2 나노입자의 합성 및 광학적 성질 (Synthesis and Optical Property of TiO2 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 지명준;박우영;유재현;이영인
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.34-39
    • /
    • 2019
  • Current synthesis processes for titanium dioxide ($TiO_2$) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize $TiO_2$ nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized $TiO_2$ nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized $TiO_2$ nanoparticles is 3.25 eV.

TiO2/Epoxy 나노복합재의 발열 특성에 관한 연구 (A Study on Exothermic Properties of TiO2/Epoxy Nanocomposites)

  • 안석환;하유성;문창권
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.99-104
    • /
    • 2013
  • Recently, various nanoparticles have been used for filler in polymer matrices. The particles of nano size are whether high or not cross-link density in polymer affects the thermal and mechanical properties of one. The properties change as a result of chemical reactions between the nanoparticles and the surface of the polymer. There are two models for nanocomposites: "repulsive interaction" and "attractive interaction" between the nanoparticles and matrix. In this study, the variation in the curing mechanism was examined when nano-size $TiO_2$ was dispersed into an epoxy (Bisphenol A, YD-128) with different curing agents. The results of this study showed that the exothermic temperature and Tg in the case of the nanoparticles used (Jeffamine) (D-180) at room temperature were reduced by an increase in the $TiO_2$ contents because of the "repulsive interaction" between the nanoparticles and the matrix. The tensile strengths were increased by increasing amounts of $TiO_2$ until 3 wt% because of a dispersion strengthening effect caused by the nanoparticles, because of the repulsive interaction. However, such tensile properties decreased at 5 wt% of $TiO_2$, because the $TiO_2$ was agglomerated in the epoxy. In contrast, in the case of the nanoparticles that used NMA and BDMA, the exothermic temperature and Tg tended to rise with increasing amounts of $TiO_2$ as a result of the "attractive interaction." This was because the same amounts of $TiO_2$ were well dispersed in the epoxy. The tensile strength decreased with an increase in the $TiO_2$ contents. In the general attractive interaction model, however, the cross-link density was higher, and tensile strength tended to increase. Therefore, for the nanoparticles that used NMA, it was difficult to conclude that the result was caused by the "attractive model."

광화학 반응에 의한 TiO2 나노입자 형성 및 광학특성(I) (Photochemical Synthesis and Optical Properties of TiO2 Nanoparticles( I ))

  • 정재훈;문정오;문병기;손세모;정수태
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.125-130
    • /
    • 2003
  • TiO$_2$ nanoparticles were prepared by photochemical synthesis in the dry toluene. The shape and size of the amorphous TiO$_2$ nanoparticles were investigated by transmission electron microscope. The particle size was varied by the contents of the titanium (IV) isopropoxide in dry toluene. Especially networked TiO$_2$ particles were formed from 40% titanium (IV) isopropoxide solution. The optical absorption spectra, photoluminescence, and PL excitation spectra of TiO$_2$ in dry toluene were obtained. The were shifted to the short wavelength as the contents of TiO$_2$ were increased. PL excitation had the peak at the wavelength regions is which the absorption increased steeply.

Catalytic Activity of Au/$TiO_2$ and Pt/$TiO_2$ Nanocatalysts Prepared with Arc Plasma Deposition under CO Oxidation

  • Jung, Chan Ho;Kim, Sang Hoon;Sahu, Nruparaj;Park, Dahee;Yun, Jung Yeul;Ha, Heonphil;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.288-288
    • /
    • 2013
  • We report the catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. Using APD, the catalyst nanoparticles were well dispersed on $TiO_2$ powder with an average particle size (2~4 nm) well below that of nanoparticles prepared by the sol-gel method (10 nm). We found that the average particle size of the dispersed gold nanoparticles can be controlled by changing the plasma discharge voltage of APD. Accordingly, the amount of loaded gold on the $TiO_2$ powder increased with increasing discharge voltage, but the specific surface area of the Au/$TiO_2$ samples decreased. As for catalytic reactivity, Au/$TiO_2$ showed a higher catalytic activity than Pt/$TiO_2$ in CO oxidation. The catalytic activity of the Au/$TiO_2$ samples showed size dependence where higher catalytic activity occurred on smaller gold nanoparticles. The study suggests that APD is a simple way to fabricate catalytically active nanocatalysts.

  • PDF

Low-temperature Synthesis of Highly Crystalline BaxSr1-xTiO3 Nanoparticles in Aqueous Medium

  • Kim, Yong-Joo;Rawal, Sher Bahadur;Sung, Sang-Do;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.141-144
    • /
    • 2011
  • We report the synthesis of $SrTiO_3$, $BaTiO_3$ and $Ba_xSr_{1-x}TiO_3$ (BST) nanoparticles (NPs) in various compositions (x = 0.25, 0.5 and 0.75) by an inorganic sol-gel method under a basic condition. Highly crystalline nanoparticles were formed at the reaction temperature of 25 - $100^{\circ}C$ from a stabilized titanium alkoxide in tetramethylammonium hydroxide (TMAH) and barium or strontium acetate in aqueous solution. Morphology and particle structure of the synthesized BST NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The BST nanoparticles in various compositions were monodispersed without mutual aggregation, and their average sizes were in the range of 70 - 80 nm. Furthermore, they showed highly crystallized perovskite phase over the whole composition range from $SrTiO_3$ to $BaTiO_3$. We also proposed a mechanism for the low-temperature formation of BST NPs.

화염온도에 따른 $TiO_{2}$ 나노입자의 결정구조 및 입자크기 변화 (Effects of Flame Temperature on the Characteristics of Flame Synthesized $TiO_{2}$ Nanoparticles)

  • 이교우;정종수;배귀남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1347-1352
    • /
    • 2004
  • In this work, $TiO_{2}$ nanoparticles were synthesized using a $N_{2}-diluted$ hydrogen coflow diffusion flame. The effect of flame temperature on the crystalline structure and the size of formed nanoparticles was investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_{2}-only$ flame to 863K for 81% $N_{2}-diluted$ flame. When the temperature was higher than about 1,000K, the particle size was tend to increase due to the agglomeration and sintering among the primary particles. On the other hand, when the temperature was lower than 1,000K, the portion of anatase phase was greater than 80%.

  • PDF

SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석 (Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles)

  • 최광일;이우형;백수웅;송진호;이석호;임철현
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.667-671
    • /
    • 2014
  • 본 연구에서는 전구체 각각의 독립제어가 가능한 이성분계 금속산화물을 얻기 위해 졸-겔법으로 합성한 실리카 나노입자를 $TiO_2$ 전구체와 교반시켜 전기방사법을 이용하여 실리카가 고르게 분산된 $TiO_2$ 나노섬유를 성공적으로 제작하였다. 제작된 나노섬유는 FE-SEM, XRD, EDS를 이용해 구조적 특성분석과 UV-VIS, 광촉매 반응기를 통해 광촉매 특성 분석을 하였다. 그 결과, 실리카가 분산된 $TiO_2$ 나노섬유는 실리카가 분산되지 않은 $TiO_2$ 나노섬유 보다 광촉매 효율이 10% 가량 향상되었다. 이는 실리카 나노입자가 첨가됨으로써 $TiO_2$가 흡수하지 못하는 380~440 nm 가시광선 영역을 흡수하여 광학적 특성 향상되었으며 Ti와 Si 두 금속산화물간에 $Br{\o}nsted$ acid site가 생성되어 OH 라디칼을 증가시킴으로써 광조사에 의해 여기된 전자를 잡아 재결합 손실을 억제하는 역할을 하여 화학적 특성이 개선되어 광촉매 효율이 증가되었을 것으로 사료된다.

Preparation and Spectroscopic Characterization of Ilmenite-Type $CoTiO_3$ Nanoparticles

  • Zhou, Guo Wei;Lee, Don-Geun;Kim, Young-Hwan;Kim, Chang-Woo;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.368-372
    • /
    • 2006
  • The cobalt titanate, $CoTiO_3$ nanoparticles have been prepared by calcinations of precursor obtained from a mixture of $TiO_2$ and $Co(OH)_2$ in aqueous cetyltrimethylammonium bromide (CTAB) solution. The nanoparticles were investigated with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analysis (TGA/DTA) to determine the crystallite size and the phase composition. The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and FT-Raman spectroscopy. XRD patterns show that $CoTiO_3$ phase was formed at calcinations temperature above 600 ${^{\circ}C}$. UV-Vis absorption spectra indicate that the $CoTiO_3$ nanoparticles have significant red shift to the visible region (400-700 nm) with $\lambda_{max}$ = 500 nm compared to pure $TiO_2$ powder ($\lambda_{max}$ = 320 nm). The new absorption peaks (absorption at 696, 604, 520, 478,456, 383, 336, 267, 238, 208 $c m ^{-1}$), which were not appeared in FT-Raman spectra of P-25, also confirm the formation of Ti-O-Co bonds at above 600 ${^{\circ}C}$ and just not the mixtures of titanium dioxide with cobalt oxides.