Ag deposited N-$TiO_2$ composite nanoparticles were prepared via $NH_3$ plasma treatment. X-ray diffraction, UV-vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared $TiO_2$ samples. The plasma treatment did not change the phase composition and particle sizes of $TiO_2$ samples, but extended its absorption edges to the visible light region. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activities of Ag deposited N-$TiO_2$ composite nanoparticles were much higher than Ag-$TiO_2$, N-$TiO_2$, and P25. A possible mechanism for the photocatalysis was proposed.
In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.
Current synthesis processes for titanium dioxide ($TiO_2$) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize $TiO_2$ nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized $TiO_2$ nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized $TiO_2$ nanoparticles is 3.25 eV.
Recently, various nanoparticles have been used for filler in polymer matrices. The particles of nano size are whether high or not cross-link density in polymer affects the thermal and mechanical properties of one. The properties change as a result of chemical reactions between the nanoparticles and the surface of the polymer. There are two models for nanocomposites: "repulsive interaction" and "attractive interaction" between the nanoparticles and matrix. In this study, the variation in the curing mechanism was examined when nano-size $TiO_2$ was dispersed into an epoxy (Bisphenol A, YD-128) with different curing agents. The results of this study showed that the exothermic temperature and Tg in the case of the nanoparticles used (Jeffamine) (D-180) at room temperature were reduced by an increase in the $TiO_2$ contents because of the "repulsive interaction" between the nanoparticles and the matrix. The tensile strengths were increased by increasing amounts of $TiO_2$ until 3 wt% because of a dispersion strengthening effect caused by the nanoparticles, because of the repulsive interaction. However, such tensile properties decreased at 5 wt% of $TiO_2$, because the $TiO_2$ was agglomerated in the epoxy. In contrast, in the case of the nanoparticles that used NMA and BDMA, the exothermic temperature and Tg tended to rise with increasing amounts of $TiO_2$ as a result of the "attractive interaction." This was because the same amounts of $TiO_2$ were well dispersed in the epoxy. The tensile strength decreased with an increase in the $TiO_2$ contents. In the general attractive interaction model, however, the cross-link density was higher, and tensile strength tended to increase. Therefore, for the nanoparticles that used NMA, it was difficult to conclude that the result was caused by the "attractive model."
TiO$_2$ nanoparticles were prepared by photochemical synthesis in the dry toluene. The shape and size of the amorphous TiO$_2$ nanoparticles were investigated by transmission electron microscope. The particle size was varied by the contents of the titanium (IV) isopropoxide in dry toluene. Especially networked TiO$_2$ particles were formed from 40% titanium (IV) isopropoxide solution. The optical absorption spectra, photoluminescence, and PL excitation spectra of TiO$_2$ in dry toluene were obtained. The were shifted to the short wavelength as the contents of TiO$_2$ were increased. PL excitation had the peak at the wavelength regions is which the absorption increased steeply.
Jung, Chan Ho;Kim, Sang Hoon;Sahu, Nruparaj;Park, Dahee;Yun, Jung Yeul;Ha, Heonphil;Park, Jeong Young
한국진공학회:학술대회논문집
/
한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
/
pp.288-288
/
2013
We report the catalytic activity of Au/$TiO_2$ and Pt/$TiO_2$ nanocatalysts under CO oxidation fabricated by arc plasma deposition (APD), which is a facile dry process with no organic materials involved. Using APD, the catalyst nanoparticles were well dispersed on $TiO_2$ powder with an average particle size (2~4 nm) well below that of nanoparticles prepared by the sol-gel method (10 nm). We found that the average particle size of the dispersed gold nanoparticles can be controlled by changing the plasma discharge voltage of APD. Accordingly, the amount of loaded gold on the $TiO_2$ powder increased with increasing discharge voltage, but the specific surface area of the Au/$TiO_2$ samples decreased. As for catalytic reactivity, Au/$TiO_2$ showed a higher catalytic activity than Pt/$TiO_2$ in CO oxidation. The catalytic activity of the Au/$TiO_2$ samples showed size dependence where higher catalytic activity occurred on smaller gold nanoparticles. The study suggests that APD is a simple way to fabricate catalytically active nanocatalysts.
Kim, Yong-Joo;Rawal, Sher Bahadur;Sung, Sang-Do;Lee, Wan-In
Bulletin of the Korean Chemical Society
/
제32권1호
/
pp.141-144
/
2011
We report the synthesis of $SrTiO_3$, $BaTiO_3$ and $Ba_xSr_{1-x}TiO_3$ (BST) nanoparticles (NPs) in various compositions (x = 0.25, 0.5 and 0.75) by an inorganic sol-gel method under a basic condition. Highly crystalline nanoparticles were formed at the reaction temperature of 25 - $100^{\circ}C$ from a stabilized titanium alkoxide in tetramethylammonium hydroxide (TMAH) and barium or strontium acetate in aqueous solution. Morphology and particle structure of the synthesized BST NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The BST nanoparticles in various compositions were monodispersed without mutual aggregation, and their average sizes were in the range of 70 - 80 nm. Furthermore, they showed highly crystallized perovskite phase over the whole composition range from $SrTiO_3$ to $BaTiO_3$. We also proposed a mechanism for the low-temperature formation of BST NPs.
In this work, $TiO_{2}$ nanoparticles were synthesized using a $N_{2}-diluted$ hydrogen coflow diffusion flame. The effect of flame temperature on the crystalline structure and the size of formed nanoparticles was investigated. The maximum centerline temperature of the flame ranged from 1,920K for $H_{2}-only$ flame to 863K for 81% $N_{2}-diluted$ flame. When the temperature was higher than about 1,000K, the particle size was tend to increase due to the agglomeration and sintering among the primary particles. On the other hand, when the temperature was lower than 1,000K, the portion of anatase phase was greater than 80%.
본 연구에서는 전구체 각각의 독립제어가 가능한 이성분계 금속산화물을 얻기 위해 졸-겔법으로 합성한 실리카 나노입자를 $TiO_2$ 전구체와 교반시켜 전기방사법을 이용하여 실리카가 고르게 분산된 $TiO_2$ 나노섬유를 성공적으로 제작하였다. 제작된 나노섬유는 FE-SEM, XRD, EDS를 이용해 구조적 특성분석과 UV-VIS, 광촉매 반응기를 통해 광촉매 특성 분석을 하였다. 그 결과, 실리카가 분산된 $TiO_2$ 나노섬유는 실리카가 분산되지 않은 $TiO_2$ 나노섬유 보다 광촉매 효율이 10% 가량 향상되었다. 이는 실리카 나노입자가 첨가됨으로써 $TiO_2$가 흡수하지 못하는 380~440 nm 가시광선 영역을 흡수하여 광학적 특성 향상되었으며 Ti와 Si 두 금속산화물간에 $Br{\o}nsted$ acid site가 생성되어 OH 라디칼을 증가시킴으로써 광조사에 의해 여기된 전자를 잡아 재결합 손실을 억제하는 역할을 하여 화학적 특성이 개선되어 광촉매 효율이 증가되었을 것으로 사료된다.
The cobalt titanate, $CoTiO_3$ nanoparticles have been prepared by calcinations of precursor obtained from a mixture of $TiO_2$ and $Co(OH)_2$ in aqueous cetyltrimethylammonium bromide (CTAB) solution. The nanoparticles were investigated with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analysis (TGA/DTA) to determine the crystallite size and the phase composition. The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and FT-Raman spectroscopy. XRD patterns show that $CoTiO_3$ phase was formed at calcinations temperature above 600 ${^{\circ}C}$. UV-Vis absorption spectra indicate that the $CoTiO_3$ nanoparticles have significant red shift to the visible region (400-700 nm) with $\lambda_{max}$ = 500 nm compared to pure $TiO_2$ powder ($\lambda_{max}$ = 320 nm). The new absorption peaks (absorption at 696, 604, 520, 478,456, 383, 336, 267, 238, 208 $c m ^{-1}$), which were not appeared in FT-Raman spectra of P-25, also confirm the formation of Ti-O-Co bonds at above 600 ${^{\circ}C}$ and just not the mixtures of titanium dioxide with cobalt oxides.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.