Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.1.34

Synthesis and Optical Property of TiO2 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process  

Ji, Myeong-Jun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Woo-Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Yoo, Jae-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.26, no.1, 2019 , pp. 34-39 More about this Journal
Abstract
Current synthesis processes for titanium dioxide ($TiO_2$) nanoparticles require expensive precursors or templates as well as complex steps and long reaction times. In addition, these processes produce highly agglomerated nanoparticles. In this study, we demonstrate a simple and continuous approach to synthesize $TiO_2$ nanoparticles by a salt-assisted ultrasonic spray pyrolysis method. We also investigate the effect of salt content in a precursor solution on the morphology and size of synthesized products. The synthesized $TiO_2$ nanoparticles are systematically characterized by X-ray diffraction, transmission electron micrograph, and UV-Vis spectroscopy. These nanoparticles appear to have a single anatase phase and a uniform particle-size distribution with an average particle size of approximately 10 nm. By extrapolating the plots of the transformed Kubelka-Munk function versus the absorbed light energy, we determine that the energy band gap of the synthesized $TiO_2$ nanoparticles is 3.25 eV.
Keywords
$TiO_2$; nanoparticles; ultrasonic; spray pyrolysis; photocatalysts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Chen and S. S. Mao: Chem. Rev., 107 (2007) 2891.   DOI
2 Y. Cai and Y. P. Feng: Prog. Surf. Sci., 91 (2016) 183.   DOI
3 J.-S. Lee, Y.-I. Lee, H. Song, D.-H. Jang and Y.-H. Choa: Curr. Appl Phys., 11 (2011) S210.   DOI
4 Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li: Chem. Rev., 114 (2014) 9987.   DOI
5 M. Tahir and N. S. Amin: Appl. Catal. B, 162 (2015) 98.   DOI
6 Y.-I. Lee, J.-S. Lee, E.-S. Park, D.-H. Jang, J.-E. Lee, K. Kim, N. V. Myung and Y.-H. Choa: J. Nanosci. Nanotechnol., 14 (2014) 8005.   DOI
7 W. Li, F. Wang, S. Feng, J. Wang, Z. Sun, B. Li, Y. Li, J. Yang, A. A. Elzatahry, Y. Xia and D. Zhao: J. Am. Chem. Soc., 135 (2013) 18300.   DOI
8 R. Thapa, S. Maiti, T. H. Rana, U. N. Maiti and K. K. Chattopadhyay: J. Mol. Catal. A: Chem., 363-364 (2012) 223.   DOI
9 Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li and M. Wang: Langmuir, 26 (2010) 9539.   DOI
10 G. L. Messing, S.C. Zhang and G. V. Jayanthi: J. Am. Ceram. Soc., 76 (1993) 2707.   DOI
11 J. H. Bang and K. S. Suslick: Adv. Mater., 22 (2010) 1039.   DOI
12 Z. Cheng, P. Foroughi and A. Behrens: Ceram. Int., 43 (2017) 3431.   DOI
13 G.-H. An, H.-J. Wang, B.-H. Kim, Y.-G. Jeong and Y.-H. Choa: Mater. Sci. Eng. A, 449-451 (2007) 821.   DOI
14 Y.-M. Choi, Y.-I. Lee, S. Kim and Y.-H. Choa: J. Alloy Compd., 615 (2014) 496.   DOI
15 Y. Hwangbo and Y.-I. Lee: J. Alloy Compd., 771 (2019) 821.   DOI