• 제목/요약/키워드: TiO₂nanoparticles

검색결과 414건 처리시간 0.03초

Titanium Dioxide Sol-gel Schottky Diodes and Effect of Titanium Dioxide Nanoparticle

  • Maniruzzaman, Mohammad;Zhai, Lindong;Mun, Seongcheol;Kim, Jaehwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2343-2347
    • /
    • 2015
  • This paper reports the effect of Titanium dioxide (TiO2) nanoparticles on a TiO2 sol-gel Schottky diode. TiO2 nanoparticles were blended with TiO2 sol-gel to fabricate the Schottky diode. TiO2 nanoparticles showed strong anatase and rutile X-ray diffraction peaks. However, the mixture of TiO2 sol-gel and TiO2 nanoparticles exhibited no anatase and rutile peaks. The forward current of the Schottky diode drastically increased as the concentration of TiO2 nanoparticles increased up to 10 wt. % and decreased after that. The possible conduction mechanism is more likely space charge limited conduction.

실리카가 첨가된 연소합성 TiO2 나노입자의 열처리에 따른 상변환 특성 (Effect of Silica Addition on Phase Transformation Characteristics of Heat-Treated Combustion-Synthesized TiO2 Nanoparticles)

  • 김민수;이교우
    • 대한기계학회논문집B
    • /
    • 제33권3호
    • /
    • pp.186-193
    • /
    • 2009
  • In this article, the effect of silica addition on the phase transformation characteristics of $TiO_2$ nanoparticles synthesized by using an $O_2$-enriched coflow, hydrogen, diffusion flame was investigated. TTIP(titanium tetra-isopropoxide) and TEOS(tetraethyl-orthosilicate) were used as precursors for $TiO_2$ and $SiO_2$ nanoparticles, respectively. Based on the results from TEM and XRD analysis, it is believed that the silica addition on the flame synthesis of $TiO_2$ nanoparticles reduces the particle size distribution and raises the temperature of the phase transition from anatase to rutile. But the reduced sizes of the synthesized particles due to the silica addition made the sintering and phase transformation of particles more easily.

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

TiO2 나노입자와 3-MPTMS로 코팅 처리한 면섬유의 표면 특성과 항균성 및 광분해효과 (Surface Characteristics, Antimicrobial and Photodegradation Effect of Cotton Fibers Coated with TiO2 Nanoparticles and 3-Mercaptopropyltrimethoxysilane(3-MPTMS))

  • 박수진;이재웅;김삼수;이상오
    • 한국염색가공학회지
    • /
    • 제30권4호
    • /
    • pp.245-255
    • /
    • 2018
  • In this study, cotton fabrics were coated with $TiO_2$ nanoparticles using 3-mercaptopropyltrimethoxysilane(3-MPTMS), which is highly reactive to cotton fabrics, as a medium, and the characteristics, antimicrobial properties, and photodegradation properties of the fibers were measured. The manufacturing process is as follows. (1) 3-MPTMS was added to isopropanol, and $TiO_2$ colloid was added to the mixture to prepare a solution. (2) Cellulose fibers were immersed in the prepared $3-MPTMS/TiO_2$ solution, stirred for 90 minutes at $45^{\circ}C$ in a constant temperature water bath, and dried thereafter. In order to identify the morphology of the cellulose fibers coated with $TiO_2$ nanoparticles, the surface was observed with a scanning electron microscope(SEM), and SEM-EDS was measured to identify the adhesion of $TiO_2$ nanoparticles. The SEM images showed $TiO_2$ nanoparticle and 3-MPTMS coated layers on the fibers and it was identified that $TiO_2$ nanoparticles were attached to the cellulose fibers. The antimicrobial activity of $3-MPTMS/TiO_2$-treated cotton fabrics was measured using a bacterial reduction method. $3-MPTMS/TiO_2$ cellulose fibers which was irradiated by ultra violet light, showed antimicrobial activity against Escherichia coli(ATCC 43895) and Staphylococcus aureus(ATCCBAA-1707) unlike unirradiated fibers. The cellulose fibers were stained with methylene blue and the photodegradation performance of the stained fabrics was analyzed. The stained fabrics showed high degradation performance with photolytic reactions of $TiO_2$ nanoparticles.

Synthesis of Ag/TiO2 Core/Shell Nanoparticles with Antibacterial Properties

  • Lin, Yue;Qiqiang, Wang;Xiaoming, Zhang;Zhouping, Wang;Wenshui, Xia;Yuming, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2607-2610
    • /
    • 2011
  • Monodispersed Ag/$TiO_2$ core/shell nanoparticles were synthesized in solution via colloid-seeded deposition process using Ag nanoparticles as colloid seeds and $Ti(SO_4)_2$ as Ti-source respectively. Silver nitrate was reduced to Ag nanoparticles with $N_2H_4{\cdot}H_2O$ in the presence of CTAB as stabilizing agent. The titania sols hydrolyzed by the $Ti(SO_4)_2$ solution deposited on the surface of Ag nanoparticles to form the Ag/$TiO_2$ core/shell nanoparticles. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed low amount of Ag ion leaching from the Ag/$TiO_2$ core/shell nanoparticles. The Ag/$TiO_2$ core/shell nanoparticles indicated excellent antibacterial effects against Escherichia coli and maintained long-term antibacterial property.

수열합성법으로 제조된 Zn-$TiO_2$ 나노입자와 $TiO_2$ 나노입자가 zebrafish 배발생에 미치는 영향 (The Effect of Nano-scale Zn-$TiO_2$ and Pure $TiO_2$ Particles were Prepared using a Hydrothermal Method on Zebrafish Embryogenesis)

  • 여민경;김효은
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권4호
    • /
    • pp.333-339
    • /
    • 2009
  • In this study, we investigated the biological toxicity of nano-scale Zn (0.1, 0.5, and 1 mol%)-doped $TiO_2$ and pure $TiO_2$ nanoparticles using zebrafish embryogenesis as our model organism. Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method for the insertion of zinc into the $TiO_2$ framework. The characters of Zn-doped $TiO_2$ (0.1%, 0.5%, 1%Zn) and pure $TiO_2$ were about 7~8 nm. These sizes were smaller than 100~200 nm of $TiO_2$ was prepared using the sol-gel method. Particularly, in this study, we found no significant biological toxicity in the hatching rate and abnormal rate under expose pure $TiO_2$ and Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method of zebrafish. It was different from the biological damage under $TiO_2$ nanoparticles were prepared using sol-gel method. We assessed that the damage was not linked to the particle's nanometer size, but rather due to the prepare method. Moreover, $TiO_2$ nanoparticles were prepared using a hydrothermal method were not shown to cause cytotoxic effects, like apoptosis and necrosis, that are the major markers of toxicity in organisms exposed to nanomaterials. Therefore, there is some relationship with biological toxicity of nanoparticles and the prepare method of nanometer size particles.

Toxicoproteomic identification of $TiO_2$ nanoparticle-induced protein expression changes in mouse brain

  • Jeon, Yu-Mi;Park, Seul-Ki;Lee, Mi-Young
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.107-114
    • /
    • 2011
  • A proteomic analysis of the proteins in mouse brain that were differentially expressed in response to $TiO_2$ nanoparticles was conducted to better understand the molecular mechanism of $TiO_2$ nanoparticle-induced brain toxicity at the protein level. A total of 990 proteins from mouse brain were resolved by two-dimensional gel electrophoresis. A comparative proteomic analysis revealed that the expression levels of 11 proteins were changed by more than 2-fold in response to $TiO_2$ nanoparticles: eight proteins were upregulated and three were downregulated by $TiO_2$ nanoparticles. In addition, the activities of several antioxidative enzymes and acetylcholine esterase were reduced in $TiO_2$ nanoparticle-exposed mouse brain. The protein profile alterations seem to be due to an indirect effect of $TiO_2$ nanoparticles, because $TiO_2$ nanoparticles were not detected in the brain in this investigation.

염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질 (Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process)

  • 황보영;이영인
    • 한국분말재료학회지
    • /
    • 제24권4호
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

The effect of TiO2 nanoparticles in reduction of environmental pollution in concrete structures

  • Tabatabaei, Javad;Gorji, Leila
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.127-129
    • /
    • 2019
  • Heterogeneous photocatalysis is developed rapidly in the field of engineering of environmental. It has a good potential to tackle with the enhancing traffic pollution. Adding photocatalyst to usual building materials such as cement and concrete makes friendly environmental materials against the air pollution. TiO2 nanoparticles are a good item for concrete structures for diminishing the air polluting affect by gasses of exhaust. In specific, the transformation of NOx to NO3- is studied and the interaction of TiO2 nanoparticles and concrete is investigated here by experimental test. This paper presents an overview of the principle of photocatalysis and the application in combination with cement, as well as the results of the laboratory research, especially towards air purifying action. In addition, by the analytical models, the influence of TiO2 nanoparticles is studied on the stiffness of the concrete. The Results show that TiO2 nanoparticles have significant effect on the reduction of environmental pollution and increase of stiffness in the concrete structures.

연소합성된 광촉매 $TiO_2$ 나노입자를 이용한 메틸렌블루 분해 실험 (Photocatalytic Degradation of Methylene Blue by the Combustion Synthesized $TiO_2$ Nanoparticles)

  • 최상민;이교우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2348-2353
    • /
    • 2007
  • In this work, combustion-synthesized $TiO_2$ nanoparticles were used for the photocatalytic degradation of methylene blue with UV light irradiation. Also the results were compared with those of commercial $TiO_2$ nanoparticles (Degussa, P-25). Particle characteristics of the two were analyzed thru the SEM, TEM, and XRD. In spite of the lower specific surface area than that of P-25, the $TiO_2$ nanoparticles formed in this study showed the relatively good ability to degrade the concentration of the organics.

  • PDF