Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.3.75

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries  

Ahn, Ja-Hwa (Department of Energy Storage & Conversion, Graduate School of Green Energy Technology, Chungnam National University)
Eom, Ji-Yong (Clean & Energy Materials R&D Center, Korea Automotive Technology Institute, Cheonan)
Kim, Jong-Huy (Department of Energy Storage Research, Korea Institute of Energy Research)
Kim, Hye Won (Radiation Integrated System Research Division, Korea Atomic Energy Research Institute)
Lee, Byung Cheol (Radiation Integrated System Research Division, Korea Atomic Energy Research Institute)
Kim, Sung-Soo (Department of Energy Storage & Conversion, Graduate School of Green Energy Technology, Chungnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.3, 2015 , pp. 75-80 More about this Journal
Abstract
We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.
Keywords
$TiO_2$; nanoparticle; electron beam irradiation; anode material; Li-ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.M. Ko, B.G. Min, D.W. Kim, K.S. Ryu, K.M. Kim, Y.G. Lee, and S.H. Chang, Thin-film type Li-ion battery, using a polyethylene separator grafted with glycidyl methacrylate. Electrochim. Acta., 50, 367 (2004).   DOI
2 J.Y. Lee, Y.M. Lee, B. Bhattacharya, Y.C. Nho, and J.K. Park, Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries. Electrochim Acta., 54, 4312 (2009).   DOI
3 J. Jiang, G. Oberdorster, and P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart Res., 11, 77 (2009).   DOI
4 C. Watson, I. Janik, T. Zhuang, O. Charvatova, R.J. Woods, and J.S. Sharp, Pulsed electron beam water radiolysis for submicrosecond hydroxyl radical protein footprinting. Anal Chem., 81, 2496 (2009).   DOI
5 K. Lin, W.J. Cooper, M.G. Nickelsen, C.N. Kurucz, and T.D. Waite, Decomposition of aqueous solutions of phenol using high energy electron beam irradiation a large scale study. Appl. Radiat lsot., 46, 1307 (1995).   DOI
6 N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, Effect of ultrasonic treatment on highly hydrophilic TiO2 surfaces. Langmuir, 14, 5918 (1998).   DOI
7 M.E. Simonsen, Z. Li, and E.G. Sogaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol-gel TiO2 film. Appl Surf Sci., 255, 8054 (2009).   DOI
8 D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol-gel type syntheses and its applications. J. Mater Sci., 46, 3669 (2011).   DOI
9 J.I. Langford and A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl Cryst, 11, 102 (1978).   DOI
10 W.H. Ryu, D.H. Nam, Y.S. Ko, R.H. Kim, and H.S. Kwon, Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries. Electrochim Acta, 61, 19 (2012).   DOI
11 P. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew Chem, Int Ed., 47, 2930 (2008).   DOI
12 T. Zhu, J. Li, and Q. Wu, Construction of TiO2 hierarchical nanostructures from nanocrystals and their photocatalytic properties. ACS Appl. Mater Interfaces, 3, 3448 (2011).   DOI
13 J.C. Hulteen and C.R. Martin, A general template-based method for the preparation of nanomaterials. J. Mater Chem., 7, 1075 (1997).   DOI
14 H. Hofmeister, S. Thiel, M. Dubiel, and E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl Phys Lett., 70, 1694 (1997).   DOI
15 Z.W. Pan, Z.R. Dai, and Z.L Wang, Lead oxid enanobelts and phase transformation induced by electron beam irradiation. Appl Phys Lett., 80, 309 (2002).   DOI
16 S.H. Kim, Y.S. Choi, K. Kang, and S.I. Yang, Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM. J. Alloys and Compounds, 427, 330 (2007).   DOI
17 M. Kim, J.Y. Shon, Y.C. Nho, T.W. Lee, and J.H. Park, Positive effects of E-beam irradiation in inorganic particle based separators for lithium-ion battery. J. Electrochem. Soc., 157, A31 (2010).   DOI
18 D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv Mater, 18, 2807 (2006).   DOI
19 A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4, 366 (2005).   DOI
20 P. Kubiak, T. Froschl, N. Husing, U. Hormann, U. Kaiser, R. Schiller, C.K. Weiss, K. Landfester, and M. Wohlfahrt-Mehrens, TiO2 anatase nanoparticle networks: Synthesis, structure, and electrochemical performance. Small, 7, 1690 (2011).   DOI
21 G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. Tirado, and P. Knauth, Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem Mater, 21, 63 (2009).   DOI