• 제목/요약/키워드: TiNi Alloy

검색결과 391건 처리시간 0.031초

PAS법을 이용한 Ni기 비정질 분말의 소결 (Sintering of Ni-Based Amorphous Alloy Powders by Plasma Activated Sintering Process)

  • 구자민;신기삼;김윤배;배종수;허성강
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.765-772
    • /
    • 2005
  • PAS(Plasma Activated Sintering) process was tried to apply for the fabrication of BMG(Bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5}\;and\;Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ from the as-atomized amorphous powder. Compressive strength for the BMG(bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5$ were lower than those of BMG rods produced by warm extrusion ,or copper mold casting method. Microstructural examination by optical microcope, SEM ana EDS showed that oxidation had occurred during PASintering. In order to prevent the powder from the oxidation during PASintering, Ni coating for $Ni_{57}Zr_{20}Ti_{18}Si_5$ amorphous powder by electroless-plating method was performed. Microstructural examination for Ni coated layers after PASintering indicated that the Ni coating had been so effective to prevent powder from oxidation during PASintering. Sintering behaviors of $Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ represent the same as those of $Ni_{57}Zr_{20}Ti_{18}Si_5$.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • 임연민;강동우;김연욱;남태현
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

$Ti-50.1at\%$ Ni합금의 변태거동에 미치는 시효처리의 영향(I) (The Effect of Ageing on the Transformation Behavior of $Ti-50.1at\%$ Ni Alloy(I))

  • 우흥식;박성범;강봉수;김성진
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.1-7
    • /
    • 2004
  • This study investigated the effects of aging on the transformation behavior of $Ti-50.1at\%$ Ni alloy by means of differential scanning calorimetry. It was found that aging in the temperature range of $350^{\circ}C\~550^{\circ}C$ induced complex transformation behavior, involving the R-phase and multiple-stage martensitic transformation. Usually aged Ni-rich NiTi alloys undergo martensitic transformation on cooling from high temperatures in two step : B2 to R and then R to Bl9'(normal behavior). But under certain ageing conditions, the transformation can also occur in three or more step(unusual multiple step behavior). In the present study we use differential seaming calorimetry(DSC) for a systematic investigation of the evolution of transformation behavior with ageing temperature and time.

Thermal Stability of the R Phase of a Rapidly Solidified Ti-47.3Ni (at%) Alloy

  • Moon, Hyo-Jung;Chun, Su-Jin;Nam, Tae-Hyun;Liu, Yinong;Yang, Hong;Kim, Yeon-Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.19-22
    • /
    • 2012
  • Transformation behavior of rapidly solidified Ti-47.3Ni (at%) alloy ribbons and thermal stability of the R phase in the ribbons were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction, and transmission electron microscopy. Rapidly solidified Ti-47.3Ni alloy ribbons showed the two-stage B2-R-B19' martensitic transformation behavior. The B2-R transformation in the ribbons was observed even after annealing at 1,223 K, which was attributed to the fact that a specific orientation relationship between $Ti_2Ni$ and matrix in the ribbons is maintained after annealing at 1,223 K. The DSC peak temperature of the B2-R transformation ($T_R^*$) decreased with raising annealing temperature, which was attributed to the increased volume fraction of $Ti_2Ni$, thus causing an increased Ni content in the matrix.

구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향 (Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy)

  • 양혁진;문형주;조예슬;박준홍;윤현준;최인철;오명훈
    • 열처리공학회지
    • /
    • 제37권2호
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.

국산 Ni-Ti합금 교정용 선재의 특성에 관한 연구 (A STUDY CONCERNING THE CHARACTERISTICS OF KOREAN NI-TI ALLOY ORTHODONTIC WIRE)

  • 박동옥;권오원
    • 대한치과교정학회지
    • /
    • 제25권2호
    • /
    • pp.187-200
    • /
    • 1995
  • 국산 Ni-Ti합금 교정용 선재(ORTHOLLOY)의 특성을 평가하기 위하여 성분, 인장특성, 굽힘특성, 열처리성, 내식성, 이온용출 등에 대해 조사하고 외국산 Ni-Ti합금 선재(SENTALLOY)의 특성과 비교 분석한 결과는 다음과 같았다. ORTHOLLOY는 초탄성 효과를 나타내는 범위내에서의 Ni과Ti 함량을 포함하고 있었다. 인장실험에서 ORTHOLLOY는 연신율 $2\%$에서 $8\%$정도 범위내에서 하중의 변화가 거의 없는 초탄성 효과를 나타내었다. 3점 굴곡실험에서 ORTHOLLOY는 SENTALLOY 보다 같은 변위량에서 높은 하중값을 나타내었고, 초탄성을 나타내는 변위영역에서의 하중 범위는 ORTHOLLOY의 경우 0.014" 에서 80-100g, 0.016"에서 140-180g, 0.018" 에서 150-200g의 값을 나타내었다. $400^{\circ}C,\;500^{\circ}C$의 열처리에 의해 초탄성을 나타내는 하중범 위가 낮아졌고, 각 열처리 온도에서는 시간이 증가함에 따라 초탄성을 나타내는 하중값의 범위가 낮아졌으며 $600^{\circ}C$에서는 10분간의 열처리로 초탄성 효과가 소실되었다. 용출되어 나온 Ni 이온의 양은 SENTALLOY의 0.01ppm미만의 극소량에 비해 ORTHOLLOY에서는 0.3ppm 전후로 높게 나타났다. 침적 실험후 주사전자현미경 관찰을 통한 표면조직 소견은 SENTALLOY에서는 침적 전후 및 침적 시간의 경과에 관계없이 전체적으로 비교적 균일한 양상을 보였으나 ORTHOLLOY에서는 pitting corrosion양상을 보였다.

  • PDF

Ni-Ti합금의 표면개질에 미치는 시효처리 온도의 영향 (Effect of Aging Treatment Temperature on Surface Modifications in Ni-Ti alloy)

  • 박제민;김완철
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.368-374
    • /
    • 2009
  • Nickel titanium shape memory alloys (NiTi) have been investigated for applications in the biomedical industry. However, little is known about the influences of surface modifications on the propertise of these alloys. The effect of electropolishing and heat treatments was found to exhibit significant surface roughness. Change of phase was B2, r-phase and B19' by heat treatments. In this study, effect of the electropolishing conditions on surface roughness is investigated in Ni-Ti alloys (Nitinol). Variation in phases with heat treatment temperature is investigated for a Ni-Ti alloy by X-ray diffraction and DSC. Characteristic of the microstructure have been observed by SEM. Surface roughness have been measured by AFM. The results clearly show that significant different in surface property to heat treated at $500^{\circ}C$ (R-phase). $TiO_2$ phases preciritated all of the specimens. It is not good effect of surface roughness because made to surface relief. The surface roughness appears to be important in the property of Ni-Ti alloys for biomedical applications.

Crystallization Behavior of Ti-(50-x)Ni-xCu(at%) (x = 20-30) Alloy Ribbons

  • Kim, Min-Su;Jeon, Young-Min;Im, Yeon-Min;Lee, Yong-Hee;Nam, Tae-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권1호
    • /
    • pp.20-23
    • /
    • 2011
  • Amorphous Ti-(50-x)Ni-xCu (at%) (x = 20, 25, 27, 30) alloy ribbons were prepared by melt spinning. Subsequently, the crystallization behavior of the alloy ribbons was investigated by X-ray diffraction and differential scanning calorimetry. ${\Delta}T$ (the temperature gap between $T_g$ and $T_x$) increased from 33 K to 47 K and the wavenumber ($Q_p$) decreased from 29.44 $nm^{-1}$ to 29.29 $nm^{-1}$ with increasing Cu content from 20 at% to 30 at%. The activation energy for crystallization decreased from 188.5 kJ/mol to 170.6 kJ/mol with increasing Cu content from 20 at% to 25 at%; afterwards, the activation energy remained near constant. Crystallization occurred in two-stage: amorphous-B2-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content less than 25 at%, while it occurred in three-stage; amorphous-B2-TiCu-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content more than 27 at%.