Browse > Article
http://dx.doi.org/10.4313/TEEM.2011.12.1.20

Crystallization Behavior of Ti-(50-x)Ni-xCu(at%) (x = 20-30) Alloy Ribbons  

Kim, Min-Su (School of Materials Science and Engineering, Gyeongsang National University)
Jeon, Young-Min (School of Materials Science and Engineering, Gyeongsang National University)
Im, Yeon-Min (School of Materials Science and Engineering, Gyeongsang National University)
Lee, Yong-Hee (School of Materials Science and Engineering, Gyeongsang National University)
Nam, Tae-Hyun (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.12, no.1, 2011 , pp. 20-23 More about this Journal
Abstract
Amorphous Ti-(50-x)Ni-xCu (at%) (x = 20, 25, 27, 30) alloy ribbons were prepared by melt spinning. Subsequently, the crystallization behavior of the alloy ribbons was investigated by X-ray diffraction and differential scanning calorimetry. ${\Delta}T$ (the temperature gap between $T_g$ and $T_x$) increased from 33 K to 47 K and the wavenumber ($Q_p$) decreased from 29.44 $nm^{-1}$ to 29.29 $nm^{-1}$ with increasing Cu content from 20 at% to 30 at%. The activation energy for crystallization decreased from 188.5 kJ/mol to 170.6 kJ/mol with increasing Cu content from 20 at% to 25 at%; afterwards, the activation energy remained near constant. Crystallization occurred in two-stage: amorphous-B2-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content less than 25 at%, while it occurred in three-stage; amorphous-B2-TiCu-$TiCu_2$ in Ti-Ni-Cu alloys with Cu content more than 27 at%.
Keywords
Intermatallics; Martensitic transformation; Rapid solidification processing; Calorimetry; Diffraction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 T. H. Nam and S. H. Kang, Met. Mater. Int. 8, 145 (2002) [DOI: 10.1007/bf03027010].   DOI
2 H. Rosner, A. V. Shelyakov, A. M. Glezer, K. Feit, and P. Schlobmacher, Mater. Sci. Eng., A 273-275, 733 (1999) [Doi: 10.1016/s0921-5093(99)00406-2].   DOI
3 Z. L. Xie, J. Van Humbeeck, Y. Liu, and L. Delaey, Scripta Mater. 37, 363 (1997) [DOI: 10.1016/s1359-6462(97)00092-4].   DOI
4 T. H. Nam, S. M. Park, T. Y. Kim, and Y. W. Kim, Smart Mater. Struct. 14, S239 (2005) [DOI: 10.1088/0964-1726/14/5/011].   DOI   ScienceOn
5 W. C. Crone, A. N. Yahya, and J. H. Perepezko, Mater. Sci. Forum 386-388, 597 (2002).   DOI
6 Y. H. Kim, G. B. Cho, S. G. Hur, S. S. Jeong, and T. H. Nam, Mater. Sci. Eng., A 438-440, 531 (2006) [DOI: 10.1016/ j.msea.2006.02.061].   DOI   ScienceOn
7 X. Wang and J. J. Vlassak, Scripta Mater. 54, 925 (2006) [DOI: 10.1016/j.scriptamat.2005.10.061].   DOI   ScienceOn
8 S. W. Kang, Y. H. Lee, Y. M. Lim, J. M. Nam, T. H. Nam, and Y. W. Kim, Scripta Mater. 59, 1186 (2008) [DOI: 10.1016/ j.scriptamat.2008.08.005].   DOI   ScienceOn
9 S. H. Chang, S. K. Wu, and H. Kimura, Mater. Sci. Eng., A 476, 316 (2008) [DOI: 10.1016/j.msea.2007.04.102].   DOI   ScienceOn
10 G. P. Cheng, Z. L. Xie, and Y. Liu, J. Alloys Compd. 415, 182 (2006) [DOI: 10.1016/j.jallcom.2005.08.014].   DOI   ScienceOn
11 J. Eckert, L. Schultz, and K. Urban, J. Non-Cryst. Solids 127, 90 (1991) [DOI: 10.1016/0022-3093(91)90404-t].   DOI
12 J. M. Nam, Y. H. Lee, T. H. Nam, Y. W. Kim, and J. M. Lee, Funct. Mater. Lett. 1, 145 (2008) [DOI: 10.1142/S1793604708000265].   DOI
13 H. Rosner, P. Schlobmacher, A. V. Shelyakov, and A. M. Glezer, Acta Mater. 49, 1541 (2001) [DOI: 10.1016/S1359-6454(01)00055-6].   DOI   ScienceOn
14 H. X. Zheng, J. Mentz, M. Bram, H. P. Buchkremer, and D. Stover, J. Alloys Compd. 463, 250 (2008)[DOI: 10.1016/ j.jallcom.2007.09.081].   DOI   ScienceOn
15 T. H. Nam, T. Saburi, Y. Kawamura, and K. Shimizu, Mater. Trans. JIM 31, 262 (1990).   DOI